Derivative – Solved Problems Database
All the problems and solutions shown below were generated using the Derivative Calculator.
ID |
Problem |
Count |
5551 | $ \dfrac{10000{x}^{2}}{1000{x}^{2}} $ | 1 |
5552 | $ 100{\cdot}\sqrt{2} $ | 1 |
5553 | $ \, x \, $ | 1 |
5554 | $ {\left(\sqrt{x}\right)}^{\frac{2}{3}}{\cdot}\ln\left({x}^{2}+1\right) $ | 1 |
5555 | $ \dfrac{30-x}{10} $ | 1 |
5556 | $ {\left(2x+1\right)}^{4}{\cdot}\left(2{x}^{2}+7x\right) $ | 1 |
5557 | $ \, x \, $ | 1 |
5558 | $ \, x \, $ | 1 |
5559 | $ 1 $ | 1 |
5560 | $ \ln\left(50\right) $ | 1 |
5561 | $ \sqrt{\sin\left(x\right)+\tan\left(x\right)} $ | 1 |
5562 | $ {x}^{2}-{o}^{2} $ | 1 |
5563 | $ \mathrm{e} $ | 1 |
5564 | $ \, x \, $ | 1 |
5565 | $ {\left(\sqrt{x}\right)}^{\frac{2}{3}}{\cdot}\ln\left({x}^{2}+1\right) $ | 1 |
5566 | $ -4{\cdot}\sin\left(\dfrac{{\pi}}{8}\right){\cdot}\left(x-2.5\right)+12 $ | 1 |
5567 | $ {\left(\sqrt{x}\right)}^{2}+{\left(\sqrt{300}\right)}^{2} $ | 1 |
5568 | $ 0.5{\cdot}\mathrm{e}^{{x}^{2}-3} $ | 1 |
5569 | $ \ln\left(x+(\sqrt{1+{x}^{2}})\right) $ | 1 |
5570 | $ \, x \, $ | 1 |
5571 | $ \, x \, $ | 1 |
5572 | $ 1 $ | 1 |
5573 | $ {\mathrm{e}}^{3x+2} $ | 1 |
5574 | $ \, x \, $ | 1 |
5575 | $ \, x \, $ | 1 |
5576 | $ \, x \, $ | 1 |
5577 | $ \dfrac{12}{{\pi}} $ | 1 |
5578 | $ \dfrac{1}{2}{\cdot}x-5 $ | 1 |
5579 | $ {\left(\ln\left(x\right)\right)}^{4} $ | 1 |
5580 | $ \, x \, $ | 1 |
5581 | $ \, x \, $ | 1 |
5582 | $ 1 $ | 1 |
5583 | $ \, x \, $ | 1 |
5584 | $ \dfrac{x-2}{{x}^{2}+x+1} $ | 1 |
5585 | $ \, x \, $ | 1 |
5586 | $ \, x \, $ | 1 |
5587 | $ 90-0.5q $ | 1 |
5588 | $ \, x \, $ | 1 |
5589 | $ \dfrac{1}{3}{\cdot}{x}^{3}+\dfrac{5}{2}{\cdot}{x}^{2}+6x+25 $ | 1 |
5590 | $ \, x \, $ | 1 |
5591 | $ 1 $ | 1 |
5592 | $ \, x \, $ | 1 |
5593 | $ {\pi}{\cdot}{\mathrm{e}}^{4}{\cdot}x $ | 1 |
5594 | $ \, x \, $ | 1 |
5595 | $ \dfrac{{\left(x+4\right)}^{3}}{2} $ | 1 |
5596 | $ -4{\cdot}\sin\left(\dfrac{{\pi}}{8}\right) $ | 1 |
5597 | $ {x}^{2}y-{y}^{3}+{\mathrm{e}}^{2x} $ | 1 |
5598 | $ 9{\cdot}\tan\left(y\right)-\dfrac{\sqrt{y}}{2}-\dfrac{6}{{y}^{4}{\cdot}\sqrt{y}} $ | 1 |
5599 | $ \, x \, $ | 1 |
5600 | $ \, x \, $ | 1 |