Derivative – Solved Problems Database
All the problems and solutions shown below were generated using the Derivative Calculator.
ID |
Problem |
Count |
5601 | $ \dfrac{\cot\left(x\right)}{{\mathrm{e}}^{4x}} $ | 1 |
5602 | $ \, x \, $ | 1 |
5603 | $ 1 $ | 1 |
5604 | $ \sqrt{x}{\cdot}{\mathrm{e}}^{{x}^{3}+5} $ | 1 |
5605 | $ \sqrt{\sin\left(x\right)} $ | 1 |
5606 | $ \, x \, $ | 1 |
5607 | $ \frac{{x}^{{3}}}{{3}} $ | 1 |
5608 | $ {\left(x+4\right)}^{\frac{3}{2}} $ | 1 |
5609 | $ \, x \, $ | 1 |
5610 | $ \dfrac{50}{x}+0.02x $ | 1 |
5611 | $ \dfrac{2}{\sqrt{x}} $ | 1 |
5612 | $ -4{\cdot}\sin\left(x\right) $ | 1 |
5613 | $ \, x \, $ | 1 |
5614 | $ \, x \, $ | 1 |
5615 | $ {x}^{8}+{x}^{7}-3{x}^{5}-6{x}^{4}+3{x}^{3}+8{x}^{2}-x-3 $ | 1 |
5616 | $ \, x \, $ | 1 |
5617 | $ 1 $ | 1 |
5618 | $ \, x \, $ | 1 |
5619 | $ \, x \, $ | 1 |
5620 | $ \dfrac{1}{2}{\cdot}\ln\left(x\right) $ | 1 |
5621 | $ \ln\left(cub{\cdot}\mathrm{e}{\cdot}root\right) $ | 1 |
5622 | $ {x}^{2}{\cdot}\left(4x+5\right) $ | 1 |
5623 | $ \, x \, $ | 1 |
5624 | $ {\left(4-3x\right)}^{2} $ | 1 |
5625 | $ \dfrac{12}{{\pi}}{\cdot}{\left(\sin\left(\dfrac{{\pi}}{3}{\cdot}x\right)\right)}^{3} $ | 1 |
5626 | $ \, x \, $ | 1 |
5627 | $ \ln\left(x-2\right) $ | 1 |
5628 | $ \, x \, $ | 1 |
5629 | $ \, x \, $ | 1 |
5630 | $ \, x \, $ | 1 |
5631 | $ 1 $ | 1 |
5632 | $ \, x \, $ | 1 |
5633 | $ \dfrac{\cos\left(x\right)}{2{\cdot}\sqrt{\sin\left(x\right)}} $ | 1 |
5634 | $ {x}^{{4}}+{2}{x}^{{2}} $ | 1 |
5635 | $ {\left(\sqrt{x}\right)}^{2}{\cdot}\sqrt{-4}{\cdot}x+\sqrt{6} $ | 1 |
5636 | $ \dfrac{{\left(4-3x\right)}^{1}}{2} $ | 1 |
5637 | $ 6{\cdot}\cos\left(2\right){\cdot}{\pi}{\cdot}\sin\left(100\right){\cdot}{\pi}{\cdot}t $ | 1 |
5638 | $ {x}^{2}+2ax-a $ | 1 |
5639 | $ {\mathrm{e}}^{2x}-{\mathrm{e}}^{-x}-1 $ | 1 |
5640 | $ x{\cdot}{\mathrm{e}}^{x}+3x $ | 1 |
5641 | $ \, x \, $ | 1 |
5642 | $ \, x \, $ | 1 |
5643 | $ \, x \, $ | 1 |
5644 | $ 1 $ | 1 |
5645 | $ \dfrac{1}{8}{\cdot}\sqrt{36+{x}^{2}}+\dfrac{1}{10}{\cdot}\left(20-x\right) $ | 1 |
5646 | $ 7+\dfrac{9}{{t}^{3}} $ | 1 |
5647 | $ \, x \, $ | 1 |
5648 | $ \sqrt{\sin\left(x\right)} $ | 1 |
5649 | $ \frac{{2}}{\sqrt{{x}}}+{x}\sqrt{{x}} $ | 1 |
5650 | $ \ln\left({\left(\cos\left(x\right)\right)}^{\frac{1}{3}}\right) $ | 1 |