Derivative – Solved Problems Database
All the problems and solutions shown below were generated using the Derivative Calculator.
ID |
Problem |
Count |
5501 | $ \, x \, $ | 1 |
5502 | $ \sqrt{5{x}^{2}+x+7} $ | 1 |
5503 | $ \, x \, $ | 1 |
5504 | $ \ln\left(30{\cdot}\left(x-50\right)\right) $ | 1 |
5505 | $ 2x-0.6x{\cdot}\ln\left(x\right) $ | 1 |
5506 | $ \, x \, $ | 1 |
5507 | $ \, x \, $ | 1 |
5508 | $ 1-0.5{x}^{-0.5} $ | 1 |
5509 | $ \, x \, $ | 1 |
5510 | $ 180{\cdot}\left(1-\dfrac{4}{{l}^{2}}\right) $ | 1 |
5511 | $ \, x \, $ | 1 |
5512 | $ \, x \, $ | 1 |
5513 | $ 0.25{x}^{-1.5} $ | 1 |
5514 | $ {\mathrm{e}}^{\sin\left(8x\right)} $ | 1 |
5515 | $ \ln\left(\sqrt{1+x}-\sqrt{1-x}\right) $ | 1 |
5516 | $ \, x \, $ | 1 |
5517 | $ 4{x}^{3}+9x $ | 1 |
5518 | $ 10{\cdot}\ln\left(30{\cdot}\left(x-50\right)\right) $ | 1 |
5519 | $ 2x-0.6x{\cdot}\ln\left(x\right) $ | 1 |
5520 | $ \, x \, $ | 1 |
5521 | $ {\left({x}^{3}+{x}^{2}\right)}^{50} $ | 1 |
5522 | $ -4{\cdot}\sin\left(\dfrac{{\pi}}{8}{\cdot}\left(x-2.5\right)+12\right) $ | 1 |
5523 | $ \ln\left(x\right)+4 $ | 1 |
5524 | $ -\left(\dfrac{nx{\cdot}\left(l-x\right)}{2t}+\dfrac{hx}{l}\right) $ | 1 |
5525 | $ \, x \, $ | 1 |
5526 | $ \dfrac{2{x}^{3}-5}{\sqrt{x}} $ | 1 |
5527 | $ x{\cdot}{\left(2x+1\right)}^{4} $ | 1 |
5528 | $ 10{\cdot}\ln\left(x\right) $ | 1 |
5529 | $ \, x \, $ | 1 |
5530 | $ -25x{\cdot}\cos\left(x\right) $ | 1 |
5531 | $ \dfrac{2x{\cdot}\sqrt{x}}{3x-1} $ | 1 |
5532 | $ \, x \, $ | 1 |
5533 | $ \dfrac{8}{{x}^{2}}+2x-4 $ | 1 |
5534 | $ \dfrac{{\pi}}{4} $ | 1 |
5535 | $ \dfrac{4{x}^{2}+12x+37}{\sqrt{x}} $ | 1 |
5536 | $ {\left({\left(2{x}^{8}+{x}^{2}-1\right)}^{9}\right)}^{\frac{1}{8}} $ | 1 |
5537 | $ \, x \, $ | 1 |
5538 | $ {\mathrm{e}}^{4{\cdot}\sqrt{x}} $ | 1 |
5539 | $ 15x{\cdot}\cos\left(150\right) $ | 1 |
5540 | $ \, x \, $ | 1 |
5541 | $ 400{\cdot}\sqrt{100-x} $ | 1 |
5542 | $ 10{\cdot}\ln\left(99{\cdot}\left(x-50\right)\right) $ | 1 |
5543 | $ \, x \, $ | 1 |
5544 | $ \dfrac{10000{x}^{2}}{1000{x}^{2}} $ | 1 |
5545 | $ \dfrac{{x}^{2}-1}{2x+5} $ | 1 |
5546 | $ \, x \, $ | 1 |
5547 | $ h $ | 1 |
5548 | $ \, x \, $ | 1 |
5549 | $ \, x \, $ | 1 |
5550 | $ \dfrac{2{x}^{3}}{3}+\dfrac{3{x}^{2}}{2}-20x-3 $ | 1 |