Derivative – Solved Problems Database
All the problems and solutions shown below were generated using the Derivative Calculator.
ID |
Problem |
Count |
5451 | $ \left(a-x\right){\cdot}{\mathrm{e}}^{-x-a} $ | 1 |
5452 | $ \, x \, $ | 1 |
5453 | $ 25x+\dfrac{4}{x} $ | 1 |
5454 | $ \sqrt{9t+1} $ | 1 |
5455 | $ -{x}^{2}+800x-1300 $ | 1 |
5456 | $ \dfrac{x}{800} $ | 1 |
5457 | $ \, x \, $ | 1 |
5458 | $ \, x \, $ | 1 |
5459 | $ \, x \, $ | 1 |
5460 | $ \dfrac{75x-{x}^{3}}{2} $ | 1 |
5461 | $ \dfrac{6}{{\left(t+6\right)}^{2}} $ | 1 |
5462 | $ \, x \, $ | 1 |
5463 | $ cub{\cdot}\mathrm{e}{\cdot}rootof{\cdot}\left(2+5x+5{x}^{2}+2{x}^{4}+7{x}^{5}\right) $ | 1 |
5464 | $ \dfrac{{x}^{2}+a}{x+a} $ | 1 |
5465 | $ \, x \, $ | 1 |
5466 | $ \, x \, $ | 1 |
5467 | $ \dfrac{3{\cdot}{\left(1+{x}^{\frac{1}{2}}\right)}^{2}}{2}{\cdot}{x}^{\frac{1}{2}} $ | 1 |
5468 | $ \sqrt{9t+1} $ | 1 |
5469 | $ 0.09{\pi}{\cdot}{x}^{2}+\dfrac{36}{x} $ | 1 |
5470 | $ \dfrac{1}{6} $ | 1 |
5471 | $ 2a+(4{\cdot}\sqrt{{a}^{2}-4a+5}) $ | 1 |
5472 | $ 48{\cdot}\sin\left(x\right) $ | 1 |
5473 | $ \dfrac{{\mathrm{e}}^{5}{\cdot}x}{\ln\left(5\right){\cdot}x} $ | 1 |
5474 | $ {\mathrm{e}}^{10-{x}^{2}} $ | 1 |
5475 | $ \, x \, $ | 1 |
5476 | $ 6{\mathrm{e}}^{x} $ | 1 |
5477 | $ \, x \, $ | 1 |
5478 | $ {2}{\sin{{\left({x}\right)}}} $ | 1 |
5479 | $ 2{\cdot}\sin\left(3x+2\right) $ | 1 |
5480 | $ {x}^{2}+49\\\\\\\\\\\\\\\ $ | 1 |
5481 | $ \, x \, $ | 1 |
5482 | $ y $ | 1 |
5483 | $ {40}^{-1} $ | 1 |
5484 | $ \, x \, $ | 1 |
5485 | $ \, x \, $ | 1 |
5486 | $ \dfrac{f{\cdot}i{\cdot}nddy}{d}{\cdot}xwh{\cdot}\mathrm{e}{\cdot}n $ | 1 |
5487 | $ \dfrac{{x}^{2}+a}{x+a} $ | 1 |
5488 | $ \dfrac{\sqrt{x}-9}{\sqrt{x}-5} $ | 1 |
5489 | $ \, x \, $ | 1 |
5490 | $ \dfrac{6x+16}{x} $ | 1 |
5491 | $ \dfrac{2{x}^{2}+x}{x-1} $ | 1 |
5492 | $ -4{\cdot}\ln\left(x\right) $ | 1 |
5493 | $ \, x \, $ | 1 |
5494 | $ \ln\left(25{\cdot}\left(x-50\right)\right) $ | 1 |
5495 | $ \, x \, $ | 1 |
5496 | $ \dfrac{4{x}^{2}-5x}{2{x}^{3}} $ | 1 |
5497 | $ 2{x}^{4}{\cdot}{\left(-5{x}^{2}\right)}^{3} $ | 1 |
5498 | $ 180{\cdot}\left(1-\dfrac{4}{{x}^{2}}\right) $ | 1 |
5499 | $ \dfrac{1}{81}{\cdot}n{\cdot}{\left(\dfrac{-x}{9}\right)}^{n-1} $ | 1 |
5500 | $ \, x \, $ | 1 |