Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org
  • Trigonometry
  • Trigonometric identities test
  • Product to sum formulas

Product to sum formulas

ans:
syntax error
C
DEL
ANS
±
(
)
÷
×
7
8
9
4
5
6
+
1
2
3
=
0
.
auto next question
evaluate answers
calculator
  • Question 1:
    1 pts
    Find the correct formula and express cosusinv\cos u\cdot \sin v as a sum or difference of trigonometric functions
    12[cos(u+v)sin(uv)]\dfrac{1}{2}[\cos (u+v)-\sin(u-v)]
    12[sin(u+v)sin(uv)]\dfrac{1}{2}[\sin (u+v)-\sin(u-v)]
    12[sin(u+v)cos(uv)]\dfrac{1}{2}[\sin (u+v)-\cos(u-v)]
  • Question 2:
    1 pts
    Express sin3xsin5x\sin 3x\cdot \sin 5x as a sum or difference of trigonometric functions.
    sin3xsin5x=12cos2x12cos8x\sin 3x\cdot \sin 5x = \dfrac{1}{2}\cos 2x-\dfrac{1}{2}\cos8x
    sin3xsin5x=12sin2x12cos8x\sin 3x\cdot \sin 5x = \dfrac{1}{2}\sin 2x-\dfrac{1}{2}\cos8x
    sin3xsin5x=12sin2x12sin8x\sin 3x\cdot \sin 5x = \dfrac{1}{2}\sin 2x-\dfrac{1}{2}\sin8x
  • Question 3:
    1 pts
    Express sin(αβ)cos(α+β)\sin(\alpha-\beta)\cdot \cos(\alpha+\beta) as a sum or difference of trigonometric functions.

    12cos2α+12cos2β\dfrac{1}{2}\cos 2\alpha+\dfrac{1}{2}\cos 2\beta

    12cos2α12sin2β\dfrac{1}{2}\cos 2\alpha-\dfrac{1}{2}\sin 2\beta

    12sin2α+12sin2β\dfrac{1}{2}\sin 2\alpha+\dfrac{1}{2}\sin 2\beta

    12sin2α12sin2β\dfrac{1}{2}\sin 2\alpha-\dfrac{1}{2}\sin 2\beta

  • Question 4:
    2 pts
    sin(60α)sin(60+α)=14(2cos2α+1)\sin(60^{\circ}-\alpha)\cdot \sin(60^{\circ}+\alpha)=\dfrac{1}{4}\left(2\cos2\alpha+1\right)
  • Question 5:
    2 pts
    Find the exact value of the expression.
    tan20tan40tan80=\tan 20^{\circ}\cdot \tan 40^{\circ} \cdot \tan 80^{\circ}=
  • Question 6:
    2 pts
    Express 4sin(1+π6)cos(1+π3)4\sin\left(1+\dfrac{\pi}{6}\right)\cos\left(1+\dfrac{\pi}{3}\right) as a sum or difference of trigonometric functions.
    cos21\cos 2-1
    2cos212\cos 2-1
    2cos2+12\cos 2+1
    cos2+1\cos 2+1
  • Question 7:
    2 pts
    Express cosx2cosy2cosx+y2\cos \dfrac{x}{2}\cos \dfrac{y}{2}\cos \dfrac{x+y}{2} as a sum or difference of trigonometric functions.
    14+14cosx+14cosy+14cos(x+y)\dfrac{1}{4}+\dfrac{1}{4}\cos x+\dfrac{1}{4} \cos y+ \dfrac{1}{4}\cos (x+y)
    14cosx+14cosy+14cos(x+y)\dfrac{1}{4}\cos x+\dfrac{1}{4} \cos y+ \dfrac{1}{4}\cos (x+y)
    14+14cosx+14cosy\dfrac{1}{4}+\dfrac{1}{4}\cos x+\dfrac{1}{4} \cos y
    14+14cos(x+y)\dfrac{1}{4}+ \dfrac{1}{4}\cos (x+y)
  • Question 8:
    3 pts
    Simplify the expression using product to sum formulas.
    sin20sin40sin60sin80=\sin20^{\circ}\sin 40^{\circ}\sin 60^{\circ}\sin 80^{\circ}=
  • Question 9:
    3 pts
    NN is an integer in the range [0,180][0,180] such that 2cos43cos26=cos69+cosN.2\cos43^{\circ}\cos26^{\circ}= \cos69^{\circ}+\cos N. What is the value of NN?
    cos20\cos 20^{\circ}
    cos17\cos 17^{\circ}
    cos27\cos 27^{\circ}
  • Question 10:
    3 pts
    Express 4sinαsin2αsin4α4\sin \alpha \sin 2\alpha \sin 4\alpha as a sum or difference of trigonometric functions.

    sin2α+sin4α+sin6α\sin 2\alpha+\sin 4\alpha+\sin 6\alpha

    sin2α+sin4αsin6α\sin 2\alpha+\sin 4\alpha-\sin 6\alpha

    sin2αsin4αsin6α\sin 2\alpha-\sin 4\alpha-\sin 6\alpha

    sin3αsin6αsin9α\sin 3\alpha-\sin 6\alpha-\sin 9\alpha