Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org
  • Trigonometry
  • Trigonometric identities test
  • Sum and Difference Formulas

Sum and Difference Formulas

ans:
syntax error
C
DEL
ANS
±
(
)
÷
×
7
8
9
4
5
6
+
1
2
3
=
0
.
auto next question
evaluate answers
calculator
  • Question 1:
    1 pts
    Which identity is this? cosαcosβsinαsinβ\cos\alpha\cos\beta-\sin\alpha\sin\beta

    sin(α+β)sin(\alpha + \beta)

    sin(αβ)sin(\alpha - \beta)

    cos(α+β)cos(\alpha + \beta)

    cos(αβ)cos(\alpha - \beta)

  • Question 2:
    1 pts
    Which identity is this? sinαcosβcosαsinβ\sin\alpha\cos\beta-\cos\alpha\sin\beta
    The sine of angle alpha plus angle beta.
    The sine of angle alpha minus angle beta.
    The cosine of angle alpha plus angle beta.
    The tangent of angle alpha plus angle beta.
  • Question 3:
    1 pts
    sin20cos10+cos20sin10=sin(30)=12\sin20^{\circ}\cdot\cos10^{\circ}+\cos20^{\circ}\cdot\sin10^{\circ}=sin(30^{\circ})=\dfrac{1}{2}
  • Question 4:
    1 pts
    cos7π10cosπ5+sin7π10sinπ5=1\cos \dfrac{7\pi}{10}\cdot \cos\dfrac{\pi}{5}+\sin \dfrac{7\pi}{10}\cdot \sin \dfrac{\pi}{5}=1
  • Question 5:
    2 pts
    Use the angle sum identity to find the exact value of cos105.\cos 105^{\circ}.

    2+64\dfrac{\sqrt{2}+\sqrt{6}}{4}

    264\dfrac{-\sqrt{2}-\sqrt{6}}{4}

    264\dfrac{\sqrt{2}-\sqrt{6}}{4}

    none of these

  • Question 6:
    2 pts
    If tanα=34\tan\alpha=-\dfrac{3}{4} and α(π2,π)\alpha \in \left(\dfrac{\pi}{2}, \pi\right) then find the value of sin(π4+α).\sin \left(\dfrac{\pi}{4}+\alpha\right).
    45-\dfrac{4}{5}
    35\dfrac{3}{5}
    210-\dfrac{\sqrt{2}}{10}
    7210-\dfrac{7\sqrt{2}}{10}
  • Question 7:
    2 pts
    If sinα=sinβ=513\sin \alpha=\sin\beta=\dfrac{5}{13} and α(0,π2);β(π2,π)\alpha \in \left(0, \dfrac{\pi}{2}\right); \beta \in \left(\dfrac{\pi}{2},\pi\right) then find the value of cos(α+β).\cos(\alpha+\beta).
    cos(α+β)=\cos(\alpha+\beta)=
  • Question 8:
    2 pts
    Use the angle difference identity to find cos(xπ).\cos(x-\pi).

    cosx\cos x

    cosx-\cos x

    sinx\sin x

    sinx-\sin x

  • Question 9:
    3 pts
    Simplify the expression.
    (sinx+siny)2+(cosx+cosy)2=(\sin x+\sin y)^{2}+(\cos x+ \cos y)^{2}=
  • Question 10:
    3 pts
    Simplify the expression.
    sinπ7cos2π7+cosπ7sin2π7cosπ7cosπ14+sinπ7sinπ14=\dfrac{\sin{\dfrac{\pi}{7}}\cos\dfrac{2\pi}{7}+\cos\dfrac{\pi}{7}\sin\dfrac{2\pi}{7}}{\cos\dfrac{\pi}{7}\cos\dfrac{\pi}{14}+\sin\dfrac{\pi}{7}\sin\dfrac{\pi}{14}}=
  • Question 11:
    3 pts
    Simplify the expression.
    cos(π3α)=\cos \left(\dfrac{\pi}{3}-\alpha\right)=
  • Question 12:
    3 pts
    If tanα=17\tan \alpha=\dfrac{1}{7} and α+β=π4\alpha+\beta=\dfrac{\pi}{4} find tanβ.\tan \beta.
    tanβ=\tan \beta=