Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org
  • Trigonometry
  • Trigonometric identities test
  • Trigonometric Values of Special Angles

Trigonometric Values of Special Angles

ans:
syntax error
C
DEL
ANS
±
(
)
÷
×
7
8
9
4
5
6
+
1
2
3
=
0
.
auto next question
evaluate answers
calculator
  • Question 1:
    1 pts
    1=π3601^{\circ}=\dfrac{\pi}{360^{\circ}} rad
  • Question 2:
    1 pts
    Find the value of sin150.\sin 150^{\circ}.
    12\dfrac{1}{2}
    32-\dfrac{\sqrt{3}}{2}
    12-\dfrac{1}{2}
    32\dfrac{\sqrt{3}}{2}
  • Question 3:
    1 pts
    Find the value of tan30.\tan 30^{\circ}.

    23\dfrac{\sqrt{2}}{3}

    33\dfrac{\sqrt{3}}{3}

    32\dfrac{\sqrt{3}}{2}

    22\dfrac{\sqrt{2}}{2}

  • Question 4:
    1 pts
    Find the value of cos120.\cos 120^{\circ}.

    12-\dfrac{1}{2}

    12\dfrac{1}{2}

    32\frac{\sqrt{3}}{2}

    32-\frac{\sqrt{3}}{2}

  • Question 5:
    2 pts
    Evaluate.
    1+sin(30)1sin30=\dfrac{1 + \sin (30^{\circ})}{1-\sin 30^{\circ}}=
  • Question 6:
    2 pts
    Find the correct sign for the given trigonometric values. tan13π6\tan \dfrac{13\pi}{6}
    positive
    negative
  • Question 7:
    2 pts
    Evaluate 3(cos30)2+2(sin30)2.3(\cos 30^{\circ})^{2}+2(\sin 30^{\circ})^{2}.

    112\dfrac{11}{2}

    54\dfrac{5}{4}

    114\dfrac{11}{4}

    52\dfrac{5}{2}

  • Question 8:
    3 pts
    Evaluate cot300cos300+tan300sin300. \cot 300^{\circ} \cdot \cos 300^{\circ} + \tan 300^{\circ} \cdot \sin 300^{\circ}.
  • Question 9:
    3 pts
    Evaluate tan420cos60.\dfrac{\tan 420^{\circ}}{\cos 60^{\circ}}.
    3\sqrt{3}
    232 \sqrt{3}
    12\dfrac{1}{2}
    11
  • Question 10:
    3 pts
    If 0<θ<3600^{\circ} <\theta < 360^{\circ}, then find all possible values of θ\theta for which sinθ=12\sin \theta = -\frac{1}{2} .

    30,21030^{\circ}, 210^{\circ}

    30,15030^{\circ}, 150^{\circ}

    150,330150^{\circ}, 330^{\circ}

    210,330210^{\circ}, 330^{\circ}

  • Question 11:
    3 pts
    If 0<θ<3600^{\circ} < \theta < 360^{\circ}, then find one possible value of θ\theta for which cotθ=3\cot \theta = - \sqrt{3} and cscθ=2.\csc \theta = 2.