Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org
  • Solid figures
  • Cube, cuboid and Prism
  • Hexagonal prism

Hexagonal prism

ans:
syntax error
C
DEL
ANS
±
(
)
÷
×
7
8
9
4
5
6
+
1
2
3
=
0
.
auto next question
evaluate answers
calculator
  • Question 1:
    1 pts
    Find the volume of the hexagonal prism shown on the picture .
    V=16603cm3V=\dfrac{1660}{3}cm^{3}
    V=840cm3V=840cm^{3}
    V=2500cm3V=2500cm^{3}
    V=1660cm3V=1660cm^{3}
  • Question 2:
    1 pts
    Which expression can be used to find the area of the hexagonal prism shown on the picture .
    A=(2273+4324)cm2A=\left(2\cdot 27\sqrt{3}+4\cdot 3\sqrt{2}\cdot 4\right)cm^{2}
    A=(2273+3324)cm2A=\left(2\cdot 27\sqrt{3}+3\cdot 3\sqrt{2}\cdot 4\right)cm^{2}
    A=(273+6324)cm2A=\left( 27\sqrt{3}+6\cdot 3\sqrt{2}\cdot 4\right)cm^{2}
    A=(2273+6324)cm2A=\left(2\cdot 27\sqrt{3}+6\cdot 3\sqrt{2}\cdot 4\right)cm^{2}
  • Question 3:
    1 pts
    Is the following expression true or false. A=(632344)cm2 A=\left(6\cdot \dfrac{3^{2}\sqrt{3}}{4}\cdot 4\right)cm^{2}
  • Question 4:
    1 pts
    If the area of total lateral surface is 504cm2504cm^{2}, and the height of prism is 7cm7cm find the surface area of the prism shown on the picture.
    A=(614434+504)cm2A=\left( 6\cdot\dfrac{144\sqrt{3}}{4}+504\right)cm^{2}
    A=(2614434+504)cm2A=\left(2\cdot 6\cdot\dfrac{144\sqrt{3}}{4}+504\right)cm^{2}
    A=(2314434+504)cm2A=\left(2\cdot 3\cdot\dfrac{144\sqrt{3}}{4}+504\right)cm^{2}
    A=(2504+314434)cm2A=\left(2\cdot 504+3\cdot\dfrac{144\sqrt{3}}{4}\right)cm^{2}
  • Question 5:
    2 pts
    Find the area of the hexagonal prism shown on the picture .
    A=(26143+619634)cm2A=\left(2\cdot 6\cdot14\cdot3 +6\cdot\dfrac{196\sqrt{3}}{4}\right)cm^{2}
    A=(2619634+6143)cm2A=\left(2\cdot 6\cdot\dfrac{196\sqrt{3}}{4}+6\cdot14\cdot3\right)cm^{2}
    A=(619634+6143)cm2A=\left( 6\cdot\dfrac{196\sqrt{3}}{4}+6\cdot14\cdot3\right)cm^{2}
  • Question 6:
    2 pts
    Find the volume of the hexagonal prism shown on the picture .
    V=1963cm3V=196\sqrt{3}cm^{3}
    V=2163cm3V=216\sqrt{3}cm^{3}
    V=2883cm3V=288\sqrt{3}cm^{3}
    V=3433cm3V=343\sqrt{3}cm^{3}
  • Question 7:
    2 pts
    Find the length of missing diagonal of the hexagonal prism shown on the picture (the length of base edges is 12cm,12cm, and the height is 10cm10cm).
    Diagonal==
  • Question 8:
    2 pts
    The volume of a regular hexagonal prism is 813cm2.81\sqrt{3}cm^{2}. Find the length of base edges of that prism if a height of that prism is twice the length of its base edges.

    7cm7cm

    5cm5cm

    4cm4cm

    3cm3cm

  • Question 9:
    3 pts
    Find the length of the base edge of the hexagonal prism shown on the picture. The volume of that prism is 1923cm3192\sqrt{3} cm^{3}.
    a=a=
  • Question 10:
    3 pts
    Find the area of the base of the hexagonal prism shown on the picture. The total surface area of that hexagonal prism is 963cm2.96\sqrt{3}cm^{2}.
    183cm218\sqrt{3}cm^{2}
    363cm236\sqrt{3}cm^{2}
    483cm248\sqrt{3}cm^{2}
  • Question 11:
    3 pts
    Find the volume of the hexagonal prism shown on the picture .
    V=V=