Site map
Tests
Lessons
Formulas
Calculators
Math Calculators, Lessons and Formulas
It is time to solve your math problem
mathportal.org
HW Help (paid service)
Math Lessons
Math Formulas
Calculators
Solid figures
Cube, cuboid and Prism
Hexagonal prism
Hexagonal prism
ans:
syntax error
C
DEL
ANS
±
(
)
÷
×
7
8
9
–
4
5
6
+
1
2
3
=
0
.
auto next question
evaluate answers
calculator
Question 1:
1 pts
Find the volume of the hexagonal prism shown on the picture .
$V=\dfrac{1660}{3}cm^{3}$
$V=840cm^{3}$
$V=2500cm^{3}$
$V=1660cm^{3}$
Question 2:
1 pts
Which expression can be used to find the area of the hexagonal prism shown on the picture .
$A=\left(2\cdot 27\sqrt{3}+4\cdot 3\sqrt{2}\cdot 4\right)cm^{2}$
$A=\left(2\cdot 27\sqrt{3}+3\cdot 3\sqrt{2}\cdot 4\right)cm^{2}$
$A=\left( 27\sqrt{3}+6\cdot 3\sqrt{2}\cdot 4\right)cm^{2}$
$A=\left(2\cdot 27\sqrt{3}+6\cdot 3\sqrt{2}\cdot 4\right)cm^{2}$
Question 3:
1 pts
Is the following expression true or false. $$ A=\left(6\cdot \dfrac{3^{2}\sqrt{3}}{4}\cdot 4\right)cm^{2}$$
Question 4:
1 pts
If the area of total lateral surface is $504cm^{2}$, and the height of prism is $7cm$ find the surface area of the prism shown on the picture.
$A=\left( 6\cdot\dfrac{144\sqrt{3}}{4}+504\right)cm^{2}$
$A=\left(2\cdot 6\cdot\dfrac{144\sqrt{3}}{4}+504\right)cm^{2}$
$A=\left(2\cdot 3\cdot\dfrac{144\sqrt{3}}{4}+504\right)cm^{2}$
$A=\left(2\cdot 504+3\cdot\dfrac{144\sqrt{3}}{4}\right)cm^{2}$
Question 5:
2 pts
Find the area of the hexagonal prism shown on the picture .
$A=\left(2\cdot 6\cdot14\cdot3 +6\cdot\dfrac{196\sqrt{3}}{4}\right)cm^{2}$
$A=\left(2\cdot 6\cdot\dfrac{196\sqrt{3}}{4}+6\cdot14\cdot3\right)cm^{2}$
$A=\left( 6\cdot\dfrac{196\sqrt{3}}{4}+6\cdot14\cdot3\right)cm^{2}$
Question 6:
2 pts
Find the volume of the hexagonal prism shown on the picture .
$V=196\sqrt{3}cm^{3}$
$V=216\sqrt{3}cm^{3}$
$V=288\sqrt{3}cm^{3}$
$V=343\sqrt{3}cm^{3}$
Question 7:
2 pts
Find the length of missing diagonal of the hexagonal prism shown on the picture (the length of base edges is $12cm,$ and the height is $10cm$).
Diagonal$=$
$26cm$
$24cm$
$22cm$
$20cm$
Question 8:
2 pts
The volume of a regular hexagonal prism is $81\sqrt{3}cm^{2}.$ Find the length of base edges of that prism if a height of that prism is twice the length of its base edges.
$7cm$
$5cm$
$4cm$
$3cm$
Question 9:
3 pts
Find the length of the base edge of the hexagonal prism shown on the picture. The volume of that prism is $192\sqrt{3} cm^{3}$.
$a=$
$7cm$
$8cm$
$10cm$
$5cm$
Question 10:
3 pts
Find the area of the base of the hexagonal prism shown on the picture. The total surface area of that hexagonal prism is $96\sqrt{3}cm^{2}.$
$18\sqrt{3}cm^{2}$
$36\sqrt{3}cm^{2}$
$48\sqrt{3}cm^{2}$
Question 11:
3 pts
Find the volume of the hexagonal prism shown on the picture .
$V=$
$196\sqrt{3}cm^{3}$
$106\sqrt{3}cm^{3}$
$108\sqrt{3}cm^{3}$
$232\sqrt{3}cm^{3}$
submit test
Pre-algebra
Polynomials
Linear equations
Quadratic equations
Radicals
Exponents and Logarithms
Trigonometry
Algebra 2
Geometry
Solid Figures
Prism
Cube and cuboid
Rectangular prism
Triangular prism
Hexagonal prism
Pyramid
Rectangular and square pyramid
Triangular pyramid
Hexagonal pyramid
Rotating solids
Cylinder
Cone
Sphere