Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org
  • Solid figures
  • Cube, cuboid and Prism
  • Hexagonal prism

Hexagonal prism

ans:
syntax error
C
DEL
ANS
±
(
)
÷
×
7
8
9
4
5
6
+
1
2
3
=
0
.
auto next question
evaluate answers
calculator
  • Question 1:
    1 pts
    Find the volume of the hexagonal prism shown on the picture .
    $V=\dfrac{1660}{3}cm^{3}$
    $V=840cm^{3}$
    $V=2500cm^{3}$
    $V=1660cm^{3}$
  • Question 2:
    1 pts
    Which expression can be used to find the area of the hexagonal prism shown on the picture .
    $A=\left(2\cdot 27\sqrt{3}+4\cdot 3\sqrt{2}\cdot 4\right)cm^{2}$
    $A=\left(2\cdot 27\sqrt{3}+3\cdot 3\sqrt{2}\cdot 4\right)cm^{2}$
    $A=\left( 27\sqrt{3}+6\cdot 3\sqrt{2}\cdot 4\right)cm^{2}$
    $A=\left(2\cdot 27\sqrt{3}+6\cdot 3\sqrt{2}\cdot 4\right)cm^{2}$
  • Question 3:
    1 pts
    Is the following expression true or false. $$ A=\left(6\cdot \dfrac{3^{2}\sqrt{3}}{4}\cdot 4\right)cm^{2}$$
  • Question 4:
    1 pts
    If the area of total lateral surface is $504cm^{2}$, and the height of prism is $7cm$ find the surface area of the prism shown on the picture.
    $A=\left( 6\cdot\dfrac{144\sqrt{3}}{4}+504\right)cm^{2}$
    $A=\left(2\cdot 6\cdot\dfrac{144\sqrt{3}}{4}+504\right)cm^{2}$
    $A=\left(2\cdot 3\cdot\dfrac{144\sqrt{3}}{4}+504\right)cm^{2}$
    $A=\left(2\cdot 504+3\cdot\dfrac{144\sqrt{3}}{4}\right)cm^{2}$
  • Question 5:
    2 pts
    Find the area of the hexagonal prism shown on the picture .
    $A=\left(2\cdot 6\cdot14\cdot3 +6\cdot\dfrac{196\sqrt{3}}{4}\right)cm^{2}$
    $A=\left(2\cdot 6\cdot\dfrac{196\sqrt{3}}{4}+6\cdot14\cdot3\right)cm^{2}$
    $A=\left( 6\cdot\dfrac{196\sqrt{3}}{4}+6\cdot14\cdot3\right)cm^{2}$
  • Question 6:
    2 pts
    Find the volume of the hexagonal prism shown on the picture .
    $V=196\sqrt{3}cm^{3}$
    $V=216\sqrt{3}cm^{3}$
    $V=288\sqrt{3}cm^{3}$
    $V=343\sqrt{3}cm^{3}$
  • Question 7:
    2 pts
    Find the length of missing diagonal of the hexagonal prism shown on the picture (the length of base edges is $12cm,$ and the height is $10cm$).
    Diagonal$=$
  • Question 8:
    2 pts
    The volume of a regular hexagonal prism is $81\sqrt{3}cm^{2}.$ Find the length of base edges of that prism if a height of that prism is twice the length of its base edges.

    $7cm$

    $5cm$

    $4cm$

    $3cm$

  • Question 9:
    3 pts
    Find the length of the base edge of the hexagonal prism shown on the picture. The volume of that prism is $192\sqrt{3} cm^{3}$.
    $a=$
  • Question 10:
    3 pts
    Find the area of the base of the hexagonal prism shown on the picture. The total surface area of that hexagonal prism is $96\sqrt{3}cm^{2}.$
    $18\sqrt{3}cm^{2}$
    $36\sqrt{3}cm^{2}$
    $48\sqrt{3}cm^{2}$
  • Question 11:
    3 pts
    Find the volume of the hexagonal prism shown on the picture .
    $V=$