Vectors – Solved Problems Database
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
151 | Calculate the dot product of the vectors $ \vec{v_1} = \left(11,~1\right) $ and $ \vec{v_2} = \left(1,~11\right) $ . | 4 |
152 | Find the sum of the vectors $ \vec{v_1} = \left(3,~4\right) $ and $ \vec{v_2} = \left(-7,~2\right) $ . | 4 |
153 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~2\right) $ . | 4 |
154 | Find the angle between vectors $ \left(-2,~2\right)$ and $\left(0,~-4\right)$. | 4 |
155 | Find the magnitude of the vector $ \| \vec{v} \| = \left(9,~-7\right) $ . | 4 |
156 | Calculate the dot product of the vectors $ \vec{v_1} = \left(6,~-2\right) $ and $ \vec{v_2} = \left(6,~-2\right) $ . | 4 |
157 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-10,~2\right) $ and $ \vec{v_2} = \left(1,~5\right) $ . | 4 |
158 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~4\right) $ . | 4 |
159 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~1\right) $ . | 4 |
160 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~0\right) $ . | 4 |
161 | Determine whether the vectors $ \vec{v_1} = \left(1,~2\right) $ and $ \vec{v_2} = \left(2,~5\right) $ are linearly independent or dependent. | 4 |
162 | Find the sum of the vectors $ \vec{v_1} = \left(0,~1\right) $ and $ \vec{v_2} = \left(0,~1\right) $ . | 4 |
163 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~4\right) $ . | 4 |
164 | Find the difference of the vectors $ \vec{v_1} = \left(4,~2\right) $ and $ \vec{v_2} = \left(8,~-2\right) $ . | 4 |
165 | Find the angle between vectors $ \left(-6,~3\right)$ and $\left(7,~-1\right)$. | 4 |
166 | Find the difference of the vectors $ \vec{v_1} = \left(-2,~4\right) $ and $ \vec{v_2} = \left(-3,~-3\right) $ . | 4 |
167 | Find the sum of the vectors $ \vec{v_1} = \left(-5,~-3\right) $ and $ \vec{v_2} = \left(3,~-8\right) $ . | 4 |
168 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~1\right) $ and $ \vec{v_2} = \left(1,~1\right) $ . | 4 |
169 | Find the difference of the vectors $ \vec{v_1} = \left(3,~-1\right) $ and $ \vec{v_2} = \left(-4,~-2\right) $ . | 4 |
170 | Find the sum of the vectors $ \vec{v_1} = \left(4,~2\right) $ and $ \vec{v_2} = \left(-8,~-2\right) $ . | 4 |
171 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~1\right) $ and $ \vec{v_2} = \left(2,~2\right) $ . | 4 |
172 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-3,~0\right) $ and $ \vec{v_2} = \left(2,~0\right) $ . | 4 |
173 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~2\right) $ and $ \vec{v_2} = \left(4,~2\right) $ . | 4 |
174 | Find the difference of the vectors $ \vec{v_1} = \left(-5,~3\right) $ and $ \vec{v_2} = \left(-3,~6\right) $ . | 4 |
175 | Find the angle between vectors $ \left(5 \sqrt{ 2 },~-3\right)$ and $\left(17,~-26\right)$. | 3 |
176 | Determine whether the vectors $ \vec{v_1} = \left(-1,~3\right) $ and $ \vec{v_2} = \left(1,~-1\right) $ are linearly independent or dependent. | 3 |
177 | Find the sum of the vectors $ \vec{v_1} = \left(-7,~-49\right) $ and $ \vec{v_2} = \left(-48,~-72\right) $ . | 3 |
178 | Find the difference of the vectors $ \vec{v_1} = \left(1,~-5\right) $ and $ \vec{v_2} = \left(-4,~-2\right) $ . | 3 |
179 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-3,~3\right) $ and $ \vec{v_2} = \left(-3,~3\right) $ . | 3 |
180 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~5\right) $ . | 3 |
181 | Find the projection of the vector $ \vec{v_1} = \left(-3,~-6\right) $ on the vector $ \vec{v_2} = \left(-5,~2\right) $. | 3 |
182 | Find the difference of the vectors $ \vec{v_1} = \left(2,~6\right) $ and $ \vec{v_2} = \left(0,~15\right) $ . | 3 |
183 | Find the angle between vectors $ \left(0,~2,~14\right)$ and $\left(0,~2,~-10\right)$. | 3 |
184 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~4\right) $ and $ \vec{v_2} = \left(3,~-3\right) $ . | 3 |
185 | Determine whether the vectors $ \vec{v_1} = \left(3,~12,~-21\right) $, $ \vec{v_2} = \left(2,~0,~4\right) $ and $ \vec{v_3} = \left(0,~-10,~20\right)$ are linearly independent or dependent. | 3 |
186 | Find the difference of the vectors $ \vec{v_1} = \left(-1,~-4\right) $ and $ \vec{v_2} = \left(-2,~2\right) $ . | 3 |
187 | Find the difference of the vectors $ \vec{v_1} = \left(1,~-3\right) $ and $ \vec{v_2} = \left(6,~-2\right) $ . | 3 |
188 | Find the difference of the vectors $ \vec{v_1} = \left(2,~5\right) $ and $ \vec{v_2} = \left(3,~-2\right) $ . | 3 |
189 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~3\right) $ . | 3 |
190 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~2,~2\right) $ and $ \vec{v_2} = \left(1,~0,~0\right) $ . | 3 |
191 | Find the projection of the vector $ \vec{v_1} = \left(0,~1,~-3\right) $ on the vector $ \vec{v_2} = \left(-64,~-2,~30\right) $. | 3 |
192 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~0\right) $ and $ \vec{v_2} = \left(0,~1\right) $ . | 3 |
193 | Find the sum of the vectors $ \vec{v_1} = \left(-1,~-5\right) $ and $ \vec{v_2} = \left(-3,~4\right) $ . | 3 |
194 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-5,~7\right) $ . | 3 |
195 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-3,~0\right) $ and $ \vec{v_2} = \left(-1,~1\right) $ . | 3 |
196 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~1\right) $ . | 3 |
197 | Determine whether the vectors $ \vec{v_1} = \left(2,~1\right) $ and $ \vec{v_2} = \left(1,~2\right) $ are linearly independent or dependent. | 3 |
198 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-2,~1\right) $ and $ \vec{v_2} = \left(-2,~1\right) $ . | 3 |
199 | Calculate the dot product of the vectors $ \vec{v_1} = \left(\dfrac{ 3 }{ 10000 },~-\dfrac{ 7 }{ 5000 }\right) $ and $ \vec{v_2} = \left(-0.9082,~0.4186\right) $ . | 3 |
200 | Find the projection of the vector $ \vec{v_1} = \left(13,~8\right) $ on the vector $ \vec{v_2} = \left(5,~-3\right) $. | 3 |