Vectors – Solved Problems Database
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
101 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~2\right) $ . | 4 |
102 | Find the projection of the vector $ \vec{v_1} = \left(0,~3\right) $ on the vector $ \vec{v_2} = \left(6,~3\right) $. | 4 |
103 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~0\right) $ . | 4 |
104 | Find the magnitude of the vector $ \| \vec{v} \| = \left(7,~7\right) $ . | 4 |
105 | Find the difference of the vectors $ \vec{v_1} = \left(3,~4\right) $ and $ \vec{v_2} = \left(-1,~1\right) $ . | 4 |
106 | Calculate the dot product of the vectors $ \vec{v_1} = \left(6,~-2\right) $ and $ \vec{v_2} = \left(6,~-2\right) $ . | 4 |
107 | Calculate the cross product of the vectors $ \vec{v_1} = \left(1,~2,~3\right) $ and $ \vec{v_2} = \left(-3,~-1,~2\right) $ . | 4 |
108 | Find the angle between vectors $ \left(\dfrac{ 2 }{ 5 },~\dfrac{ 3 }{ 10 }\right)$ and $\left(-\dfrac{ 3 }{ 20 },~\dfrac{ 1 }{ 5 }\right)$. | 4 |
109 | Find the angle between vectors $ \left(1,~3\right)$ and $\left(2,~-5\right)$. | 4 |
110 | Find the difference of the vectors $ \vec{v_1} = \left(0,~-16\right) $ and $ \vec{v_2} = \left(8,~-20\right) $ . | 4 |
111 | Find the projection of the vector $ \vec{v_1} = \left(8,~5\right) $ on the vector $ \vec{v_2} = \left(-9,~-2\right) $. | 4 |
112 | Calculate the dot product of the vectors $ \vec{v_1} = \left(6,~-1\right) $ and $ \vec{v_2} = \left(5,~7\right) $ . | 4 |
113 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~1\right) $ and $ \vec{v_2} = \left(1,~1\right) $ . | 4 |
114 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-3,~0\right) $ and $ \vec{v_2} = \left(2,~0\right) $ . | 4 |
115 | Find the projection of the vector $ \vec{v_1} = \left(3,~-5\right) $ on the vector $ \vec{v_2} = \left(0,~1\right) $. | 4 |
116 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-10,~2\right) $ and $ \vec{v_2} = \left(1,~5\right) $ . | 4 |
117 | Find the difference of the vectors $ \vec{v_1} = \left(-2,~4\right) $ and $ \vec{v_2} = \left(-3,~-3\right) $ . | 4 |
118 | Find the sum of the vectors $ \vec{v_1} = \left(2,~-5\right) $ and $ \vec{v_2} = \left(1,~4\right) $ . | 4 |
119 | Find the magnitude of the vector $ \| \vec{v} \| = \left(9,~7\right) $ . | 4 |
120 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~-3\right) $ . | 4 |
121 | Find the angle between vectors $ \left(-7,~-5\right)$ and $\left(2,~-8\right)$. | 4 |
122 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-1,~4\right) $ . | 4 |
123 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~4\right) $ and $ \vec{v_2} = \left(0,~0\right) $ . | 4 |
124 | Find the angle between vectors $ \left(3,~4\right)$ and $\left(10,~4\right)$. | 4 |
125 | Find the difference of the vectors $ \vec{v_1} = \left(-24,~21\right) $ and $ \vec{v_2} = \left(-2,~1\right) $ . | 4 |
126 | Find the angle between vectors $ \left(2,~1,~-4\right)$ and $\left(3,~-5,~2\right)$. | 4 |
127 | Find the angle between vectors $ \left(2,~1,~-4\right)$ and $\left(3,~-5,~2\right)$. | 4 |
128 | | 4 |
129 | Find the magnitude of the vector $ \| \vec{v} \| = \left(6,~-1\right) $ . | 4 |
130 | Find the magnitude of the vector $ \| \vec{v} \| = \left(9,~-7\right) $ . | 4 |
131 | Calculate the dot product of the vectors $ \vec{v_1} = \left(11,~1\right) $ and $ \vec{v_2} = \left(1,~11\right) $ . | 4 |
132 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-8,~15\right) $ . | 4 |
133 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~1\right) $ . | 4 |
134 | Find the projection of the vector $ \vec{v_1} = \left(-5,~8\right) $ on the vector $ \vec{v_2} = \left(-6,~-7\right) $. | 4 |
135 | Find the magnitude of the vector $ \| \vec{v} \| = \left(6,~-5\right) $ . | 4 |
136 | Find the projection of the vector $ \vec{v_1} = \left(-10,~-7\right) $ on the vector $ \vec{v_2} = \left(-8,~4\right) $. | 4 |
137 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-3,~6\right) $ . | 4 |
138 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-8,~-7\right) $ . | 4 |
139 | Find the sum of the vectors $ \vec{v_1} = \left(-1,~2\right) $ and $ \vec{v_2} = \left(1,~1\right) $ . | 4 |
140 | Find the angle between vectors $ \left(2,~1,~-4\right)$ and $\left(3,~-5,~2\right)$. | 4 |
141 | Find the angle between vectors $ \left(-2,~1\right)$ and $\left(6,~2\right)$. | 4 |
142 | Find the magnitude of the vector $ \| \vec{v} \| = \left(24,~-7\right) $ . | 4 |
143 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-4,~-5\right) $ . | 4 |
144 | Find the difference of the vectors $ \vec{v_1} = \left(2,~1\right) $ and $ \vec{v_2} = \left(1,~3\right) $ . | 4 |
145 | Find the difference of the vectors $ \vec{v_1} = \left(3,~-1\right) $ and $ \vec{v_2} = \left(-4,~-2\right) $ . | 4 |
146 | Find the sum of the vectors $ \vec{v_1} = \left(4,~2\right) $ and $ \vec{v_2} = \left(-8,~-2\right) $ . | 4 |
147 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~1\right) $ . | 4 |
148 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~4\right) $ . | 4 |
149 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-1,~2\right) $ . | 4 |
150 | Find the sum of the vectors $ \vec{v_1} = \left(0,~1\right) $ and $ \vec{v_2} = \left(0,~1\right) $ . | 4 |