Vectors – Solved Problems Database
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
6501 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-3,~-2\right) $ and $ \vec{v_2} = \left(4,~0\right) $ . | 1 |
6502 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~1,~0\right) $ and $ \vec{v_2} = \left(1,~0,~2\right) $ . | 1 |
6503 | Calculate the dot product of the vectors $ \vec{v_1} = \left(5,~-12\right) $ and $ \vec{v_2} = \left(15,~8\right) $ . | 1 |
6504 | Calculate the cross product of the vectors $ \vec{v_1} = \left(1,~1,~0\right) $ and $ \vec{v_2} = \left(1,~0,~2\right) $ . | 1 |
6505 | Find the difference of the vectors $ \vec{v_1} = \left(5,~-12\right) $ and $ \vec{v_2} = \left(15,~8\right) $ . | 1 |
6506 | Find the projection of the vector $ \vec{v_1} = \left(7,~0\right) $ on the vector $ \vec{v_2} = \left(9,~0\right) $. | 1 |
6507 | Find the difference of the vectors $ \vec{v_1} = \left(-2,~-4,~3\right) $ and $ \vec{v_2} = \left(3,~-1,~-2\right) $ . | 1 |
6508 | Calculate the dot product of the vectors $ \vec{v_1} = \left(6,~-6\right) $ and $ \vec{v_2} = \left(4,~5\right) $ . | 1 |
6509 | Find the projection of the vector $ \vec{v_1} = \left(4,~-5\right) $ on the vector $ \vec{v_2} = \left(3,~-1\right) $. | 1 |
6510 | Find the angle between vectors $ \left(4,~3\right)$ and $\left(-1,~5\right)$. | 1 |
6511 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~0\right) $ . | 1 |
6512 | Find the projection of the vector $ \vec{v_1} = \left(5,~-4,~-5\right) $ on the vector $ \vec{v_2} = \left(2,~-1,~5\right) $. | 1 |
6513 | Find the projection of the vector $ \vec{v_1} = \left(2,~-1,~5\right) $ on the vector $ \vec{v_2} = \left(5,~-4,~-5\right) $. | 1 |
6514 | Determine whether the vectors $ \vec{v_1} = \left(15,~-8\right) $ and $ \vec{v_2} = \left(-5,~12\right) $ are linearly independent or dependent. | 1 |
6515 | Calculate the dot product of the vectors $ \vec{v_1} = \left(15,~-8\right) $ and $ \vec{v_2} = \left(-5,~12\right) $ . | 1 |
6516 | Find the angle between vectors $ \left(15,~-8\right)$ and $\left(-5,~12\right)$. | 1 |
6517 | Find the sum of the vectors $ \vec{v_1} = \left(3,~-1\right) $ and $ \vec{v_2} = \left(12,~15\right) $ . | 1 |
6518 | Find the difference of the vectors $ \vec{v_1} = \left(3,~-1\right) $ and $ \vec{v_2} = \left(12,~15\right) $ . | 1 |
6519 | Find the angle between vectors $ \left(5,~5\right)$ and $\left(-8,~8\right)$. | 1 |
6520 | Find the difference of the vectors $ \vec{v_1} = \left(2,~4\right) $ and $ \vec{v_2} = \left(4,~3\right) $ . | 1 |
6521 | Calculate the dot product of the vectors $ \vec{v_1} = \left(5,~3\right) $ and $ \vec{v_2} = \left(3,~-5\right) $ . | 1 |
6522 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~1\right) $ . | 1 |
6523 | Calculate the cross product of the vectors $ \vec{v_1} = \left(-2,~-3,~0\right) $ and $ \vec{v_2} = \left(4,~-1,~0\right) $ . | 1 |
6524 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~2,~-5\right) $ . | 1 |
6525 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~6\right) $ . | 1 |
6526 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~2\right) $ and $ \vec{v_2} = \left(-1,~1\right) $ . | 1 |
6527 | Determine whether the vectors $ \vec{v_1} = \left(2,~1,~2\right) $, $ \vec{v_2} = \left(1,~2,~1\right) $ and $ \vec{v_3} = \left(0,~1,~1\right)$ are linearly independent or dependent. | 1 |
6528 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~2,~2\right) $ . | 1 |
6529 | Calculate the cross product of the vectors $ \vec{v_1} = \left(1,~2,~-1\right) $ and $ \vec{v_2} = \left(2,~1,~4\right) $ . | 1 |
6530 | Calculate the cross product of the vectors $ \vec{v_1} = \left(-1,~0,~3\right) $ and $ \vec{v_2} = \left(1,~2,~-1\right) $ . | 1 |
6531 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~-1,~4\right) $ and $ \vec{v_2} = \left(0,~3,~-1\right) $ . | 1 |
6532 | Find the difference of the vectors $ \vec{v_1} = \left(1,~2,~3\right) $ and $ \vec{v_2} = \left(1,~-1,~4\right) $ . | 1 |
6533 | Calculate the dot product of the vectors $ \vec{v_1} = \left(4,~2\right) $ and $ \vec{v_2} = \left(2,~4\right) $ . | 1 |
6534 | Find the difference of the vectors $ \vec{v_1} = \left(4,~2\right) $ and $ \vec{v_2} = \left(2,~4\right) $ . | 1 |
6535 | Calculate the cross product of the vectors $ \vec{v_1} = \left(-2,~3,~1\right) $ and $ \vec{v_2} = \left(-2,~5,~0\right) $ . | 1 |
6536 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~3,~-1\right) $ and $ \vec{v_2} = \left(-3,~0,~0\right) $ . | 1 |
6537 | Find the magnitude of the vector $ \| \vec{v} \| = \left(6,~-2\right) $ . | 1 |
6538 | Find the sum of the vectors $ \vec{v_1} = \left(4,~-7\right) $ and $ \vec{v_2} = \left(5,~1\right) $ . | 1 |
6539 | Find the angle between vectors $ \left(-1,~3\right)$ and $\left(5,~5\right)$. | 1 |
6540 | Find the magnitude of the vector $ \| \vec{v} \| = \left(9,~-9\right) $ . | 1 |
6541 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~-8\right) $ . | 1 |
6542 | Find the difference of the vectors $ \vec{v_1} = \left(-2,~3,~-1\right) $ and $ \vec{v_2} = \left(2,~1,~3\right) $ . | 1 |
6543 | Find the difference of the vectors $ \vec{v_1} = \left(1,~-2\right) $ and $ \vec{v_2} = \left(5,~-4\right) $ . | 1 |
6544 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~-7\right) $ . | 1 |
6545 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-2,~-1\right) $ and $ \vec{v_2} = \left(2,~1\right) $ . | 1 |
6546 | Calculate the dot product of the vectors $ \vec{v_1} = \left(\dfrac{ 3 }{ 10 },~-\dfrac{ 2 }{ 5 },~0\right) $ and $ \vec{v_2} = \left(0,~0,~\dfrac{ 1 }{ 10 }\right) $ . | 1 |
6547 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~0,~0\right) $ . | 1 |
6548 | Calculate the cross product of the vectors $ \vec{v_1} = \left(\dfrac{ 3 }{ 10 },~-\dfrac{ 2 }{ 5 },~0\right) $ and $ \vec{v_2} = \left(0,~0,~\dfrac{ 1 }{ 10 }\right) $ . | 1 |
6549 | Determine whether the vectors $ \vec{v_1} = \left(1,~4,~-2\right) $, $ \vec{v_2} = \left(6,~-2,~8\right) $ and $ \vec{v_3} = \left(0,~0,~0\right)$ are linearly independent or dependent. | 1 |
6550 | Calculate the dot product of the vectors $ \vec{v_1} = \left(5,~5\right) $ and $ \vec{v_2} = \left(-6,~1\right) $ . | 1 |