Vectors – Solved Problems Database
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
6451 | Calculate the cross product of the vectors $ \vec{v_1} = \left(4,~3,~-1\right) $ and $ \vec{v_2} = \left(-3,~0,~-1\right) $ . | 1 |
6452 | Find the difference of the vectors $ \vec{v_1} = \left(4,~-3,~-22\right) $ and $ \vec{v_2} = \left(0,~0,~0\right) $ . | 1 |
6453 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~1,~4\right) $ . | 1 |
6454 | Calculate the cross product of the vectors $ \vec{v_1} = \left(1,~1,~3\right) $ and $ \vec{v_2} = \left(0,~3,~3\right) $ . | 1 |
6455 | Find the difference of the vectors $ \vec{v_1} = \left(1,~2,~3\right) $ and $ \vec{v_2} = \left(2,~-1,~5\right) $ . | 1 |
6456 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~-4\right) $ . | 1 |
6457 | Find the projection of the vector $ \vec{v_1} = \left(3,~-4\right) $ on the vector $ \vec{v_2} = \left(4,~3\right) $. | 1 |
6458 | Find the sum of the vectors $ \vec{v_1} = \left(-5,~3\right) $ and $ \vec{v_2} = \left(4,~-2\right) $ . | 1 |
6459 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~1,~0\right) $ . | 1 |
6460 | Calculate the cross product of the vectors $ \vec{v_1} = \left(0,~0,~25\right) $ and $ \vec{v_2} = \left(\dfrac{ 329 }{ 500 },~\dfrac{ 6 }{ 25 },~0\right) $ . | 1 |
6461 | Calculate the cross product of the vectors $ \vec{v_1} = \left(0,~0,~25\right) $ and $ \vec{v_2} = \left(\dfrac{ 329 }{ 500 },~-\dfrac{ 239 }{ 1000 },~0\right) $ . | 1 |
6462 | Calculate the cross product of the vectors $ \vec{v_1} = \left(-50,~0,~0\right) $ and $ \vec{v_2} = \left(\dfrac{ 329 }{ 500 },~-\dfrac{ 239 }{ 1000 },~0\right) $ . | 1 |
6463 | Calculate the cross product of the vectors $ \vec{v_1} = \left(-50,~0,~0\right) $ and $ \vec{v_2} = \left(0,~0,~\dfrac{ 239 }{ 20 }\right) $ . | 1 |
6464 | Calculate the dot product of the vectors $ \vec{v_1} = \left(8,~-2,~1\right) $ and $ \vec{v_2} = \left(-2,~1,~0\right) $ . | 1 |
6465 | Find the magnitude of the vector $ \| \vec{v} \| = \left(8,~-2,~1\right) $ . | 1 |
6466 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-1,~-4,~1\right) $ . | 1 |
6467 | Calculate the cross product of the vectors $ \vec{v_1} = \left(8,~-2,~1\right) $ and $ \vec{v_2} = \left(-2,~1,~0\right) $ . | 1 |
6468 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~2,~2\right) $ . | 1 |
6469 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~2,~2\right) $ and $ \vec{v_2} = \left(-1,~-4,~1\right) $ . | 1 |
6470 | Find the angle between vectors $ \left(3,~2,~2\right)$ and $\left(-1,~-4,~1\right)$. | 1 |
6471 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~2,~2\right) $ and $ \vec{v_2} = \left(-10,~5,~10\right) $ . | 1 |
6472 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-1,~-4,~1\right) $ and $ \vec{v_2} = \left(-10,~5,~10\right) $ . | 1 |
6473 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~-1,~-2\right) $ . | 1 |
6474 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~-1,~-2\right) $ . | 1 |
6475 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~-1,~-2\right) $ and $ \vec{v_2} = \left(3,~-1,~-2\right) $ . | 1 |
6476 | Calculate the dot product of the vectors $ \vec{v_1} = \left(0,~4,~-2\right) $ and $ \vec{v_2} = \left(3,~-1,~-2\right) $ . | 1 |
6477 | Calculate the dot product of the vectors $ \vec{v_1} = \left(0,~4,~-2\right) $ and $ \vec{v_2} = \left(1,~-1,~-2\right) $ . | 1 |
6478 | Find the angle between vectors $ \left(3,~-1,~-2\right)$ and $\left(1,~-1,~-2\right)$. | 1 |
6479 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~-2,~0\right) $ . | 1 |
6480 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~-2,~1\right) $ . | 1 |
6481 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~2,~1\right) $ . | 1 |
6482 | Calculate the dot product of the vectors $ \vec{v_1} = \left(1,~2,~1\right) $ and $ \vec{v_2} = \left(3,~2,~-1\right) $ . | 1 |
6483 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-4,~-2,~8\right) $ and $ \vec{v_2} = \left(3,~2,~-1\right) $ . | 1 |
6484 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-4,~-2,~8\right) $ and $ \vec{v_2} = \left(3,~-2,~1\right) $ . | 1 |
6485 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-4,~-2,~8\right) $ and $ \vec{v_2} = \left(1,~2,~1\right) $ . | 1 |
6486 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~-2,~1\right) $ and $ \vec{v_2} = \left(1,~2,~1\right) $ . | 1 |
6487 | Find the angle between vectors $ \left(3,~-2,~1\right)$ and $\left(1,~2,~1\right)$. | 1 |
6488 | Find the difference of the vectors $ \vec{v_1} = \left(-4,~7,~-2\right) $ and $ \vec{v_2} = \left(6,~1,~-4\right) $ . | 1 |
6489 | Calculate the cross product of the vectors $ \vec{v_1} = \left(-3,~4,~0\right) $ and $ \vec{v_2} = \left(0,~3,~-3\right) $ . | 1 |
6490 | Calculate the cross product of the vectors $ \vec{v_1} = \left(0,~-1,~5\right) $ and $ \vec{v_2} = \left(5,~2,~0\right) $ . | 1 |
6491 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-2,~2\right) $ . | 1 |
6492 | Calculate the dot product of the vectors $ \vec{v_1} = \left(4,~45\right) $ and $ \vec{v_2} = \left(7,~25\right) $ . | 1 |
6493 | Calculate the cross product of the vectors $ \vec{v_1} = \left(-3,~-3,~0\right) $ and $ \vec{v_2} = \left(0,~-2,~-3\right) $ . | 1 |
6494 | Calculate the cross product of the vectors $ \vec{v_1} = \left(4,~-2,~3\right) $ and $ \vec{v_2} = \left(3,~-1,~2\right) $ . | 1 |
6495 | Calculate the cross product of the vectors $ \vec{v_1} = \left(1,~2,~3\right) $ and $ \vec{v_2} = \left(2,~5,~7\right) $ . | 1 |
6496 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-2,~1,~-3\right) $ and $ \vec{v_2} = \left(-1,~-3,~-5\right) $ . | 1 |
6497 | Determine whether the vectors $ \vec{v_1} = \left(1,~2,~12\right) $, $ \vec{v_2} = \left(4,~-7,~6\right) $ and $ \vec{v_3} = \left(7,~9,~9\right)$ are linearly independent or dependent. | 1 |
6498 | Calculate the cross product of the vectors $ \vec{v_1} = \left(-2,~5,~3\right) $ and $ \vec{v_2} = \left(3,~-4,~-2\right) $ . | 1 |
6499 | Calculate the cross product of the vectors $ \vec{v_1} = \left(0,~4,~0\right) $ and $ \vec{v_2} = \left(-4,~-3,~0\right) $ . | 1 |
6500 | Find the angle between vectors $ \left(1,~2\right)$ and $\left(10,~5\right)$. | 1 |