Integrals – Solved Problems Database
All the problems and solutions shown below were generated using the Integral Calculator.
ID |
Problem |
Count |
801 | $$ \int^{\pi/6}_{0} \frac{{1}}{{{\cos{{\left({x}\right)}}}^{{2}}}} \, d\,x $$ | 1 |
802 | $$ $$ | 1 |
803 | $$ $$ | 1 |
804 | $$ $$ | 1 |
805 | $$ $$ | 1 |
806 | $$ $$ | 1 |
807 | $$ \displaystyle\int^{\pi/2}_{0} {\left(\cos\left(x\right)\right)}^{2}\, \mathrm d x $$ | 1 |
808 | $$ $$ | 1 |
809 | $$ $$ | 1 |
810 | $$ $$ | 1 |
811 | $$ \displaystyle\int^{1}_{0} \dfrac{1}{\sqrt{1+x}}\, \mathrm d x $$ | 1 |
812 | $$ \displaystyle\int {\left({x}^{2}+4\right)}^{0.5}\, \mathrm d x $$ | 1 |
813 | $$ $$ | 1 |
814 | $$ \displaystyle\int r{\cdot}\sqrt{16-{r}^{2}}\, \mathrm d x $$ | 1 |
815 | $$ \displaystyle\int \dfrac{{8}^{1+x}+{4}^{1-x}}{{2}^{x}}\, \mathrm d x $$ | 1 |
816 | $$ \displaystyle\int \dfrac{\cos\left(\sqrt{x}\right)}{\sqrt{x}}\, \mathrm d x $$ | 1 |
817 | $$ $$ | 1 |
818 | $$ \displaystyle\int \dfrac{{x}^{3}}{{\left(x-1\right)}^{4}}\, \mathrm d x $$ | 1 |
819 | $$ $$ | 1 |
820 | $$ $$ | 1 |
821 | $$ $$ | 1 |
822 | $$ \displaystyle\int \dfrac{{\mathrm{e}}^{x}}{1+{\mathrm{e}}^{2x}}\, \mathrm d x $$ | 1 |
823 | $$ \displaystyle\int \sqrt{{\left(\dfrac{3}{2}\right)}^{2}-{\left(x-\dfrac{5}{2}\right)}^{2}}\, \mathrm d x $$ | 1 |
824 | $$ $$ | 1 |
825 | $$ $$ | 1 |
826 | $$ $$ | 1 |
827 | $$ $$ | 1 |
828 | $$ $$ | 1 |
829 | $$ $$ | 1 |
830 | $$ $$ | 1 |
831 | $$ $$ | 1 |
832 | $$ $$ | 1 |
833 | $$ \displaystyle\int {\left({x}^{4}-1\right)}^{\frac{1}{4}}\, \mathrm d x $$ | 1 |
834 | $$ \displaystyle\int \dfrac{1}{{x}^{3}{\cdot}{\left(\sin\left(2{\cdot}\ln\left(x\right)\right)\right)}^{2}}\, \mathrm d x $$ | 1 |
835 | $$ $$ | 1 |
836 | $$ $$ | 1 |
837 | $$ $$ | 1 |
838 | $$ $$ | 1 |
839 | $$ \displaystyle\int \dfrac{x-2}{x}-3{\cdot}\sqrt{2x-4}+2\, \mathrm d x $$ | 1 |
840 | $$ \displaystyle\int 3{\cdot}\sqrt{x}\, \mathrm d x $$ | 1 |
841 | $$ $$ | 1 |
842 | $$ $$ | 1 |
843 | $$ $$ | 1 |
844 | $$ $$ | 1 |
845 | $$ $$ | 1 |
846 | $$ $$ | 1 |
847 | $$ $$ | 1 |
848 | $$ $$ | 1 |
849 | $$ \displaystyle\int \sqrt{x}{\cdot}\sqrt{1-x}\, \mathrm d x $$ | 1 |
850 | $$ $$ | 1 |