Integrals – Solved Problems Database
All the problems and solutions shown below were generated using the Integral Calculator.
ID |
Problem |
Count |
1 | $$ \displaystyle\int \dfrac{\cos\left(4x\right)}{\sin\left(2x\right){\cdot}\cos\left(2x\right)}\, \mathrm d x $$ | 389 |
2 | $$ $$ | 31 |
3 | $$ \displaystyle\int {x}^{2}+3x-1\, \mathrm d x $$ | 22 |
4 | $$ \displaystyle\int^{1}_{0} \dfrac{1}{1+{x}^{6}}\, \mathrm d x $$ | 18 |
5 | $$ \displaystyle\int \dfrac{1}{1+{x}^{4}}\, \mathrm d x $$ | 15 |
6 | $$ \displaystyle\int {x}^{2}{\cdot}\sin\left(x\right)\, \mathrm d x $$ | 8 |
7 | $$ \displaystyle\int^{1}_{0} \sin\left({x}^{2}\right)\, \mathrm d x $$ | 6 |
8 | $$ $$ | 6 |
9 | $$ $$ | 6 |
10 | $$ \displaystyle\int 2{\cdot}\cot\left(4x\right)\, \mathrm d x $$ | 5 |
11 | $$ \displaystyle\int 6x{\cdot}{\left(3+x\right)}^{-2}\, \mathrm d x $$ | 5 |
12 | $$ $$ | 5 |
13 | $$ \displaystyle\int \dfrac{1}{{x}^{3}+1}\, \mathrm d x $$ | 5 |
14 | $$ \displaystyle\int \tan\left(x\right)\, \mathrm d x $$ | 5 |
15 | $$ \displaystyle\int {x}^{2}\, \mathrm d x $$ | 5 |
16 | $$ $$ | 4 |
17 | $$ \displaystyle\int^{3\pi/2}_{\pi} \left(2x-3\right){\cdot}\sin\left(2x\right)\, \mathrm d x $$ | 4 |
18 | $$ \displaystyle\int \dfrac{{\left(1+\sqrt{x}\right)}^{\frac{1}{5}}}{x{x}^{\frac{9}{10}}}\, \mathrm d x $$ | 4 |
19 | $$ $$ | 4 |
20 | $$ \displaystyle\int \sqrt{{\left(\dfrac{3}{2}\right)}^{2}-{\left(x-\dfrac{5}{2}\right)}^{2}}\, \mathrm d x $$ | 4 |
21 | $$ \displaystyle\int \dfrac{3x}{x}+3\, \mathrm d x $$ | 4 |
22 | $$ \displaystyle\int^{2}_{1} \left(x-2\right){\cdot}\ln\left(x\right)-{x}^{2}+3x-2\, \mathrm d x $$ | 4 |
23 | $$ \displaystyle\int x{\cdot}\sin\left(3{x}^{2}+{\pi}\right)\, \mathrm d x $$ | 4 |
24 | $$ $$ | 4 |
25 | $$ \displaystyle\int^{\pi/2}_{-\pi/2} 2{\cdot}\csc\left(x\right)-\csc\left(x\right)\, \mathrm d x $$ | 4 |
26 | $$ $$ | 4 |
27 | $$ \displaystyle\int^{8.682}_{0} {\left(-\sqrt{\dfrac{x}{10}}-\sin\left(0.5x\right)\right)}^{2}\, \mathrm d x $$ | 4 |
28 | $$ \displaystyle\int {x}^{2}{\cdot}\sqrt{x}\, \mathrm d x $$ | 4 |
29 | $$ \displaystyle\int {x}^{\frac{2}{5}}\, \mathrm d x $$ | 4 |
30 | $$ $$ | 4 |
31 | $$ \displaystyle\int \mathrm{e}^{2x}\, \mathrm d x $$ | 4 |
32 | $$ \displaystyle\int \mathrm{e}^{2x}{\cdot}\cos\left(3x\right)\, \mathrm d x $$ | 4 |
33 | $$ \displaystyle\int \cos\left(\color{orangered}{\square}\right)\, \mathrm d x $$ | 4 |
34 | $$ \displaystyle\int^{3}_{-1} \dfrac{14-6{x}^{2}}{4}\, \mathrm d x $$ | 4 |
35 | $$ \displaystyle\int^{5}_{-5} \dfrac{1}{x}\, \mathrm d x $$ | 4 |
36 | $$ $$ | 4 |
37 | $$ \displaystyle\int {x}^{-1}\, \mathrm d x $$ | 4 |
38 | $$ \displaystyle\int \csc\left(x\right)\, \mathrm d x $$ | 4 |
39 | $$ $$ | 4 |
40 | $$ \displaystyle\int \dfrac{1}{\sqrt{4{x}^{2}+9}}\, \mathrm d x $$ | 4 |
41 | $$ \displaystyle\int^{e}_{1} x{\cdot}\ln\left(x\right)\, \mathrm d x $$ | 3 |
42 | $$ \displaystyle\int 6140{x}^{-0.904}\, \mathrm d x $$ | 3 |
43 | $$ \displaystyle\int^{49}_{25} \dfrac{\sqrt{x}}{x-4}\, \mathrm d x $$ | 3 |
44 | $$ $$ | 3 |
45 | $$ $$ | 3 |
46 | $$ \int {10}{x}^{{3}}-{5}\frac{{x}}{\sqrt{{{x}^{{4}}-{x}^{{2}}+{6}}}} \, d\,x $$ | 3 |
47 | $$ $$ | 3 |
48 | $$ \displaystyle\int \dfrac{4{x}^{3}}{5{\cdot}\left({\left(3{x}^{4}-3\right)}^{2}+1\right)}\, \mathrm d x $$ | 3 |
49 | $$ \displaystyle\int \cos\left(2x\right){\cdot}\cos\left(2x\right)\, \mathrm d x $$ | 3 |
50 | $$ \displaystyle\int \dfrac{{x}^{2}}{{x}^{3}+5}\, \mathrm d x $$ | 3 |