Derivative – Solved Problems Database
All the problems and solutions shown below were generated using the Derivative Calculator.
ID |
Problem |
Count |
1001 | $ \left(2{x}^{4}+3\right){\cdot}\left({x}^{2}+1\right) $ | 2 |
1002 | $ \sec\left(x-6\right)+\sec\left(3{x}^{3}\right) $ | 2 |
1003 | $ 6{x}^{3}-8{\cdot}\left({t}^{2}+{y}^{2}\right){\cdot}x+\arctan\left(7tx\right) $ | 2 |
1004 | $ \dfrac{\dfrac{8}{7{\cdot}\sqrt{7}}{\cdot}\left(15-x\right)}{{\left(60x-2{x}^{2}\right)}^{\frac{1}{2}}} $ | 2 |
1005 | $ -5{\mathrm{e}}^{-0.5}{\cdot}t+5{\mathrm{e}}^{-t} $ | 2 |
1006 | $ 1+x+\dfrac{{x}^{2}}{2}+\dfrac{{x}^{3}}{6}+\dfrac{{x}^{4}}{24}+\dfrac{{x}^{5}}{120} $ | 2 |
1007 | $ {x}^{4}-\dfrac{32{x}^{2}}{7} $ | 2 |
1008 | $ \left({x}^{4}+3\right){\cdot}\left(3+\sqrt{x}\right) $ | 2 |
1009 | $ \left({x}^{4}+3\right){\cdot}\ln\left(\dfrac{1}{{x}^{2}}-2x\right) $ | 2 |
1010 | $ 6{\cdot}\sqrt{x}+8{x}^{\frac{1}{4}} $ | 2 |
1011 | $ \dfrac{{x}^{\frac{1}{2}}}{x}+\dfrac{\ln\left(x\right)}{2{\cdot}\sqrt{x}} $ | 2 |
1012 | $ \dfrac{14x}{\sqrt{{a}^{2}+{x}^{2}}} $ | 2 |
1013 | $ -5{\mathrm{e}}^{-0.5}{\cdot}t+5{\mathrm{e}}^{-t} $ | 2 |
1014 | $ \, x \, $ | 2 |
1015 | $ \dfrac{4}{{\left(4x-1\right)}^{3}} $ | 2 |
1016 | $ \, x \, $ | 2 |
1017 | $ x{\cdot}{\mathrm{e}}^{-1500x} $ | 2 |
1018 | $ \, x \, $ | 2 |
1019 | $ \dfrac{x}{{x}^{9}+8} $ | 2 |
1020 | $ \dfrac{\dfrac{8}{7{\cdot}\sqrt{7}}{\cdot}\left(15-x\right)}{{\left(60x-2{x}^{2}\right)}^{\frac{1}{2}}} $ | 2 |
1021 | $ {\left(6x+1\right)}^{\ln\left(4x+6\right)} $ | 2 |
1022 | $ \, x \, $ | 2 |
1023 | $ {x}^{2}+49 $ | 2 |
1024 | $ {\mathrm{e}}^{{x}^{6}}+{\pi}{\cdot}\ln\left(3\right) $ | 2 |
1025 | $ \, x \, $ | 2 |
1026 | $ \arctan\left(\dfrac{50}{x}\right) $ | 2 |
1027 | $ \dfrac{0.09{x}^{0.45}+0.31{x}^{0.75}-0.82{x}^{0.29}}{0.97{x}^{0.12}+0.86{x}^{0.18}-0.53{x}^{0.96}} $ | 2 |
1028 | $ \dfrac{\sec\left(x\right)}{3+\sec\left(x\right)} $ | 2 |
1029 | $ 7000 $ | 2 |
1030 | $ \sin\left({x}^{3}\right) $ | 2 |
1031 | $ 3{x}^{2}+\dfrac{48}{{\left({x}^{2}-16\right)}^{2}} $ | 2 |
1032 | $ 12{\cdot}\sqrt{x} $ | 2 |
1033 | $ \sqrt{{x}^{2}} $ | 2 |
1034 | $ \left({x}^{4}+3\right){\cdot}\ln\left(\dfrac{1}{{x}^{2}-2x}\right) $ | 2 |
1035 | $ \dfrac{5+\ln\left(t\right)}{7-\ln\left(t\right)} $ | 2 |
1036 | $ \, x \, $ | 2 |
1037 | $ \dfrac{-32}{{\left(2x+3\right)}^{\frac{1}{8}}} $ | 2 |
1038 | $ \arctan\left(5\right){\cdot}{x}^{2} $ | 2 |
1039 | $ 3{\cdot}\sin\left(\color{orangered}{\square}\right) $ | 2 |
1040 | $ 5{\cdot}\cos\left(x\right)-2{\cdot}\tan\left(x\right)+3{\mathrm{e}}^{x}-2{x}^{3}+6{\cdot}\sqrt{x}+7 $ | 2 |
1041 | $ \dfrac{7{x}^{2}}{6}-\dfrac{3}{5{x}^{2}} $ | 2 |
1042 | $ \, x \, $ | 2 |
1043 | $ \sin\left({x}^{4}\right) $ | 2 |
1044 | $ x{\cdot}\ln\left(8\right) $ | 2 |
1045 | $ \dfrac{43{x}^{4}+23x}{66{x}^{2}} $ | 2 |
1046 | $ \ln\left(3x\right) $ | 2 |
1047 | $ -{x}^{2}+3 $ | 2 |
1048 | $ -\sqrt{{\left(x-3\right)}^{3}{\cdot}\left(2{x}^{2}-1\right)} $ | 2 |
1049 | $ \sqrt{7} $ | 2 |
1050 | $ {\mathrm{e}}^{{x}^{2}+1} $ | 2 |