Derivative – Solved Problems Database
All the problems and solutions shown below were generated using the Derivative Calculator.
ID |
Problem |
Count |
951 | $ {x}^{2}+4x+1 $ | 2 |
952 | $ 128{\cdot}\cos\left(x\right) $ | 2 |
953 | $ \dfrac{-1}{t} $ | 2 |
954 | $ \dfrac{\ln\left(2x+8\right)}{3{\mathrm{e}}^{5}{\cdot}x} $ | 2 |
955 | $ \, x \, $ | 2 |
956 | $ \dfrac{{x}^{3}{\cdot}{\mathrm{e}}^{{x}^{4}}}{{x}^{2}-4x+1} $ | 2 |
957 | $ {\left(4{x}^{4}+9\right)}^{7} $ | 2 |
958 | $ 10{\cdot}{1.1}^{x} $ | 2 |
959 | $ {x}^{2}{\cdot}\sqrt{4}{\cdot}x+7 $ | 2 |
960 | $ 2{x}^{5}+4{x}^{3}-3{x}^{2}+x+6 $ | 2 |
961 | $ \, x \, $ | 2 |
962 | $ \dfrac{\ln\left({\mathrm{e}}^{4x}+3\right)}{4} $ | 2 |
963 | $ 3{x}^{2}{\cdot}\ln\left(2\right){\cdot}x $ | 2 |
964 | $ 3x{\cdot}{\left(\sec\left({\pi}{\cdot}x\right)\right)}^{3} $ | 2 |
965 | $ {\left(\sqrt{120-3t}\right)}^{2}+{\left(200-4t\right)}^{2} $ | 2 |
966 | $ 3{\cdot}{\left(6{x}^{10}-10{x}^{5}\right)}^{17} $ | 2 |
967 | $ \sqrt{9}{\cdot}x-50x+3 $ | 2 |
968 | $ \, x \, $ | 2 |
969 | $ \dfrac{1}{9t+4} $ | 2 |
970 | $ \dfrac{{x}^{3}+2}{x} $ | 2 |
971 | $ 0.11215{x}^{2}-(\dfrac{4.47895x}{0.58876+0.21542{x}^{2}}) $ | 2 |
972 | $ gx $ | 2 |
973 | $ \dfrac{{5}^{\sqrt{t}}{\cdot}\sqrt{{t}^{2}+2}}{\sin\left(t\right){\cdot}\tan\left(t\right)} $ | 2 |
974 | $ fx{x}^{\frac{5}{3}}-10{x}^{1.5} $ | 2 |
975 | $ {\mathrm{e}}^{{x}^{4}} $ | 2 |
976 | $ 2{t}^{2}-3t $ | 2 |
977 | $ 4{x}^{3}-2{x}^{2}+x $ | 2 |
978 | $ \left(0.77{x}^{0.08}+0.48{x}^{0.01}-0.59{x}^{0.91}\right){\cdot}\left(0.22{x}^{0.25}+0.12{x}^{0.9}-0.48{x}^{0.08}\right) $ | 2 |
979 | $ \, x \, $ | 2 |
980 | $ \sqrt{9}{\cdot}x-\sqrt{50}{\cdot}x-\sqrt{3} $ | 2 |
981 | $ \, x \, $ | 2 |
982 | $ {x}^{2}{\cdot}\sqrt{6-{x}^{2}} $ | 2 |
983 | $ {\left(-6{x}^{2}+5\right)}^{4}{\cdot}{\left(5{x}^{2}+9\right)}^{9} $ | 2 |
984 | $ 4{x}^{3}-2{x}^{2}+x $ | 2 |
985 | $ \, x \, $ | 2 |
986 | $ \dfrac{\ln\left({x}^{3}\right)}{3} $ | 2 |
987 | $ 8{\cdot}{\left(0.2{x}^{0.92}+0.89{x}^{0.51}-0.99{x}^{0.87}\right)}^{0.88} $ | 2 |
988 | $ \dfrac{15-x}{{\left(60x-2{x}^{2}\right)}^{\frac{1}{2}}} $ | 2 |
989 | $ \dfrac{{x}^{3}}{8}-\dfrac{3{x}^{2}}{4} $ | 2 |
990 | $ {x}^{3}-2{x}^{2} $ | 2 |
991 | $ \dfrac{\ln\left(x\right)}{7x+5} $ | 2 |
992 | $ \dfrac{{\mathrm{e}}^{{x}^{3}}}{3} $ | 2 |
993 | $ \dfrac{10000}{{x}^{2}} $ | 2 |
994 | $ \tan\left(-1.5\right){\cdot}{x}^{2} $ | 2 |
995 | $ {\left(6x+1\right)}^{\ln\left(4x+6\right)} $ | 2 |
996 | $ {\left(1+2{\cdot}\sqrt{x}\right)}^{3}{\cdot}{x}^{\frac{3}{2}} $ | 2 |
997 | $ \sqrt{2}{\cdot}{x}^{2}+2 $ | 2 |
998 | $ {48}^{3} $ | 2 |
999 | $ \dfrac{1000}{1+({\mathrm{e}}^{-0.4x+2})} $ | 2 |
1000 | $ 0.5-0.5{\mathrm{e}}^{-10t} $ | 2 |