Derivative – Solved Problems Database
All the problems and solutions shown below were generated using the Derivative Calculator.
ID |
Problem |
Count |
5951 | $ 8{x}^{\frac{1}{4}} $ | 1 |
5952 | $ 6{\cdot}\sqrt{x} $ | 1 |
5953 | $ \dfrac{{x}^{2}{\cdot}{\mathrm{e}}^{x}}{{x}^{2}+{x}^{x}} $ | 1 |
5954 | $ x+y+z+\dfrac{16}{xyz} $ | 1 |
5955 | $ \dfrac{{x}^{2}{\cdot}{\mathrm{e}}^{x}}{{x}^{2}+{\mathrm{e}}^{x}} $ | 1 |
5956 | $ x+y+z+\dfrac{16}{xyz} $ | 1 |
5957 | $ {\left(\dfrac{{x}^{3}-1}{{u}^{3}+1}\right)}^{8} $ | 1 |
5958 | $ {\left(\dfrac{{x}^{3}-1}{{x}^{3}+1}\right)}^{8} $ | 1 |
5959 | $ {\left(\sin\left(x\right)\right)}^{2} $ | 1 |
5960 | $ \dfrac{\sqrt{x}}{{\left(5-x\right)}^{2}} $ | 1 |
5961 | $ 30{\cdot}{2}^{10}x $ | 1 |
5962 | $ \, x \, $ | 1 |
5963 | $ 0.11215{x}^{2}-(\dfrac{4.47895x}{0.58876+0.21542{x}^{2}}) $ | 1 |
5964 | $ 2t{\cdot}{\left(t-8\right)}^{2}+32 $ | 1 |
5965 | $ 2t{\cdot}{\left(t-8\right)}^{2} $ | 1 |
5966 | $ {\sin{{\left({x}\right)}}} $ | 1 |
5967 | $ {\sin{{\left({x}\right)}}} $ | 1 |
5968 | $ \dfrac{3{\cdot}{\left(1+{x}^{\frac{1}{2}}\right)}^{2}}{2}{\cdot}{x}^{\frac{1}{2}} $ | 1 |
5969 | $ \dfrac{4x}{8x+1} $ | 1 |
5970 | $ \, x \, $ | 1 |
5971 | $ \, x \, $ | 1 |
5972 | $ \, x \, $ | 1 |
5973 | $ 0.1{x}^{2}{\cdot}{\mathrm{e}}^{x}-2x-10 $ | 1 |
5974 | $ \, x \, $ | 1 |
5975 | $ {\left(30-x\right)}^{3} $ | 1 |
5976 | $ {\mathrm{e}}^{1.5x-1} $ | 1 |
5977 | $ \dfrac{3{x}^{4}-\ln\left(\sqrt{x}\right)}{{\mathrm{e}}^{3{x}^{2}}+\sqrt{\mathrm{e}}} $ | 1 |
5978 | $ \dfrac{90{\cdot}\ln\left(x\right)}{x} $ | 1 |
5979 | $ 2x{\cdot}{\left(16-{x}^{2}\right)}^{0.5} $ | 1 |
5980 | $ -5x+4 $ | 1 |
5981 | $ \, x \, $ | 1 |
5982 | $ \, x \, $ | 1 |
5983 | $ \, x \, $ | 1 |
5984 | $ \ln\left(\dfrac{3{x}^{2}}{\sqrt{6}}{\cdot}x+2\right) $ | 1 |
5985 | $ \dfrac{{\left(8+6a\right)}^{2}}{3} $ | 1 |
5986 | $ \dfrac{\left(x+1\right){\cdot}\left(x-10\right)}{\left(x-1\right){\cdot}\left(x+10\right)} $ | 1 |
5987 | $ \, x \, $ | 1 |
5988 | $ \, x \, $ | 1 |
5989 | $ \, x \, $ | 1 |
5990 | $ \, x \, $ | 1 |
5991 | $ \, x \, $ | 1 |
5992 | $ \, x \, $ | 1 |
5993 | $ \, x \, $ | 1 |
5994 | $ \, x \, $ | 1 |
5995 | $ \, x \, $ | 1 |
5996 | $ \, x \, $ | 1 |
5997 | $ \, x \, $ | 1 |
5998 | $ \, x \, $ | 1 |
5999 | $ 100-x $ | 1 |
6000 | $ \dfrac{{x}^{2}}{x+56} $ | 1 |