Derivative – Solved Problems Database
All the problems and solutions shown below were generated using the Derivative Calculator.
ID |
Problem |
Count |
5951 | $ \cos\left(x\right){\cdot}{\mathrm{e}}^{2x+\sec\left(x\right)} $ | 1 |
5952 | $ \, x \, $ | 1 |
5953 | $ \dfrac{30-{x}^{4}{\cdot}\cos\left(x\right)}{{x}^{4}} $ | 1 |
5954 | $ 2x+3y $ | 1 |
5955 | $ c $ | 1 |
5956 | $ \dfrac{1}{\cos\left(x\right)} $ | 1 |
5957 | $ \sin\left(\cos\left(x\right){\cdot}\tan\left(2x\right)\right) $ | 1 |
5958 | $ \, x \, $ | 1 |
5959 | $ \, x \, $ | 1 |
5960 | $ \, x \, $ | 1 |
5961 | $ \left(2-x\right){\cdot}{\left(x-1\right)}^{0.5} $ | 1 |
5962 | $ \sqrt{3}+\sin\left(10\right){\cdot}x $ | 1 |
5963 | $ \dfrac{{x}^{3}}{6}+\dfrac{1}{2}{\cdot}x $ | 1 |
5964 | $ \, x \, $ | 1 |
5965 | $ \, x \, $ | 1 |
5966 | $ 7{x}^{10}-5x-22 $ | 1 |
5967 | $ \dfrac{1100}{1+1099{\mathrm{e}}^{-0.5x}} $ | 1 |
5968 | $ 7{x}^{6}-5{x}^{6}-8x+3{x}^{5}-4{x}^{3}+2{x}^{7} $ | 1 |
5969 | $ 0.4{\cdot}2 $ | 1 |
5970 | $ \sqrt{{60}^{2}+5{t}^{2}} $ | 1 |
5971 | $ \, x \, $ | 1 |
5972 | $ -3000{x}^{2}+59000x $ | 1 |
5973 | $ {\left(26-4x\right)}^{2} $ | 1 |
5974 | $ {3}{x}^{{2}}+\sqrt{{x}}-{4}{x} $ | 1 |
5975 | $ \, x \, $ | 1 |
5976 | $ \, x \, $ | 1 |
5977 | $ \dfrac{{x}^{3}+6{x}^{2}+5x}{x+1.5} $ | 1 |
5978 | $ \, x \, $ | 1 |
5979 | $ \, x \, $ | 1 |
5980 | $ {x}^{-12} $ | 1 |
5981 | $ \dfrac{3}{{\left(3x+3\right)}^{2}} $ | 1 |
5982 | $ \dfrac{4}{{x}^{2}+2} $ | 1 |
5983 | $ p $ | 1 |
5984 | $ 2{x}^{2}{\cdot}\ln\left({x}^{2}\right) $ | 1 |
5985 | $ \sqrt{21}{\cdot}{x}^{2}+8 $ | 1 |
5986 | $ \sqrt{{60}^{2}+5{x}^{2}} $ | 1 |
5987 | $ \, x \, $ | 1 |
5988 | $ -{\left(1-{x}^{2}\right)}^{\frac{1}{2}} $ | 1 |
5989 | $ \, x \, $ | 1 |
5990 | $ \, x \, $ | 1 |
5991 | $ \dfrac{{x}^{3}+6{x}^{2}+5x}{x+1.5}{\cdot}k $ | 1 |
5992 | $ \left(x+11\right){\cdot}{\mathrm{e}}^{y}-22 $ | 1 |
5993 | $ \, x \, $ | 1 |
5994 | $ \, x \, $ | 1 |
5995 | $ {x}^{\frac{3}{8}} $ | 1 |
5996 | $ \, x \, $ | 1 |
5997 | $ -\dfrac{1}{{\left(x+1\right)}^{2}} $ | 1 |
5998 | $ \, x \, $ | 1 |
5999 | $ \, x \, $ | 1 |
6000 | $ \dfrac{x}{x-0.5} $ | 1 |