Derivative – Solved Problems Database
All the problems and solutions shown below were generated using the Derivative Calculator.
ID |
Problem |
Count |
5901 | $ \, x \, $ | 1 |
5902 | $ 2.5x $ | 1 |
5903 | $ 70{\cdot}{1.5}^{-\left(0.4t\right)} $ | 1 |
5904 | $ 1-{\left(1-\dfrac{x}{1000}\right)}^{3} $ | 1 |
5905 | $ \dfrac{3000}{\tan\left(x\right)} $ | 1 |
5906 | $ \ln\left(8{x}^{5}+3x\right) $ | 1 |
5907 | $ \dfrac{75x-{x}^{3}}{2} $ | 1 |
5908 | $ \ln\left(\dfrac{1}{36}\right) $ | 1 |
5909 | $ \left(3{x}^{2}-x\right){\cdot}\left(2-{x}^{2}\right) $ | 1 |
5910 | $ \, x \, $ | 1 |
5911 | $ \, x \, $ | 1 |
5912 | $ \, x \, $ | 1 |
5913 | $ \dfrac{t}{6+{x}^{2}} $ | 1 |
5914 | $ \dfrac{0.4}{1-0.6x} $ | 1 |
5915 | $ {\left(\mathrm{sech}\left(7x\right)\right)}^{2} $ | 1 |
5916 | $ \sqrt{6{x}^{4}+10} $ | 1 |
5917 | $ \dfrac{1}{t} $ | 1 |
5918 | $ \dfrac{1}{t} $ | 1 |
5919 | $ \dfrac{5}{t} $ | 1 |
5920 | $ \dfrac{5}{t} $ | 1 |
5921 | $ 6{\cdot}\ln\left(t\right) $ | 1 |
5922 | $ 6{\cdot}\ln\left(t\right) $ | 1 |
5923 | $ 9{t}^{2} $ | 1 |
5924 | $ \dfrac{x-\sqrt{x}}{{x}^{2}} $ | 1 |
5925 | $ x $ | 1 |
5926 | $ \dfrac{\ln\left(x\right)}{{x}^{17}} $ | 1 |
5927 | $ \, x \, $ | 1 |
5928 | $ \dfrac{3}{2}{\cdot}{x}^{2}+8x-6 $ | 1 |
5929 | $ \, x \, $ | 1 |
5930 | $ \, x \, $ | 1 |
5931 | $ \, x \, $ | 1 |
5932 | $ \dfrac{6}{{\left(t+6\right)}^{2}} $ | 1 |
5933 | $ \dfrac{6}{{\left(t+6\right)}^{2}} $ | 1 |
5934 | $ \dfrac{2x}{{\left(x-6\right)}^{2}} $ | 1 |
5935 | $ \dfrac{x}{9}{\cdot}\sqrt{81-{x}^{2}} $ | 1 |
5936 | $ \ln\left(\cos\left(x\right)\right) $ | 1 |
5937 | $ fx $ | 1 |
5938 | $ {x}^{2}+\dfrac{1}{{x}^{2}} $ | 1 |
5939 | $ 2{t}^{2}-20t+10 $ | 1 |
5940 | $ 5{x}^{2}+9x-6 $ | 1 |
5941 | $ -2{\cdot}\sqrt{x} $ | 1 |
5942 | $ \, x \, $ | 1 |
5943 | $ \left(x-t\right){\cdot}{\mathrm{e}}^{-x-t} $ | 1 |
5944 | $ \left(a-x\right){\cdot}{\mathrm{e}}^{-x-a} $ | 1 |
5945 | $ 6{\mathrm{e}}^{x} $ | 1 |
5946 | $ {\mathrm{e}}^{x}{\cdot}{x}^{2} $ | 1 |
5947 | $ \cos\left(\color{orangered}{\square}\right) $ | 1 |
5948 | $ {\mathrm{e}}^{x}{\cdot}2{x}^{2} $ | 1 |
5949 | $ {\mathrm{e}}^{\frac{-2}{x}} $ | 1 |
5950 | $ 3{\cdot}\sqrt{9}{\cdot}x+1 $ | 1 |