Derivative – Solved Problems Database
All the problems and solutions shown below were generated using the Derivative Calculator.
ID |
Problem |
Count |
5901 | $ {x}^{2}+49 $ | 1 |
5902 | $ {\left({\mathrm{e}}^{x}+4\right)}^{2} $ | 1 |
5903 | $ \dfrac{5x-4}{\sqrt{x}} $ | 1 |
5904 | $ \sqrt{6{x}^{4}+10} $ | 1 |
5905 | $ {\left(\dfrac{2}{x}-\dfrac{7}{\sqrt{x}}\right)}^{2} $ | 1 |
5906 | $ 0.5{\cdot}\left(10+t{\cdot}{\mathrm{e}}^{\frac{-t}{20}}\right) $ | 1 |
5907 | $ \dfrac{3}{x} $ | 1 |
5908 | $ y $ | 1 |
5909 | $ \, x \, $ | 1 |
5910 | $ {\mathrm{e}}^{-\frac{200}{t}} $ | 1 |
5911 | $ \, x \, $ | 1 |
5912 | $ -0.15{x}^{2}+12x $ | 1 |
5913 | $ \, x \, $ | 1 |
5914 | $ {x}^{\frac{1}{x}} $ | 1 |
5915 | $ \dfrac{{\left(2x-5\right)}^{4}}{{\left(x+1\right)}^{3}} $ | 1 |
5916 | $ {\left(2x+4\right)}^{2} $ | 1 |
5917 | $ \, x \, $ | 1 |
5918 | $ 0.2{\cdot}\cos\left(x\right) $ | 1 |
5919 | $ \, x \, $ | 1 |
5920 | $ 0.5{\cdot}\left(10+t{\cdot}{\mathrm{e}}^{\frac{-t}{20}}\right) $ | 1 |
5921 | $ \dfrac{x-1}{{x}^{2}-4x-12} $ | 1 |
5922 | $ {x}^{\frac{-8}{5}} $ | 1 |
5923 | $ 50{\cdot}\sqrt{x} $ | 1 |
5924 | $ \, x \, $ | 1 |
5925 | $ 2x+1{\cdot}\ln\left(5\right) $ | 1 |
5926 | $ \, x \, $ | 1 |
5927 | $ \dfrac{3{x}^{3}}{\sqrt{{x}^{2}+5}}+100 $ | 1 |
5928 | $ \, x \, $ | 1 |
5929 | $ \dfrac{2{x}^{3}+3}{{x}^{2}-1} $ | 1 |
5930 | $ \dfrac{7x{\cdot}\left(9x-1\right)}{{\left(\sin\left(x\right)\right)}^{2}} $ | 1 |
5931 | $ \dfrac{3+4}{{3}^{3}-3} $ | 1 |
5932 | | 1 |
5933 | $ {\mathrm{e}}^{3}{\cdot}x{\cdot}\sqrt{4-\cos\left({\pi}\right){\cdot}x} $ | 1 |
5934 | $ \, x \, $ | 1 |
5935 | $ \, x \, $ | 1 |
5936 | $ \dfrac{10000}{x} $ | 1 |
5937 | $ {\left({0.75}^{2}-0.2{\cdot}\sin\left(x\right)\right)}^{0.5} $ | 1 |
5938 | $ \dfrac{4x{\cdot}\left(9-{x}^{3}\right)}{81} $ | 1 |
5939 | $ 2{q}^{2}+q+4 $ | 1 |
5940 | $ \, x \, $ | 1 |
5941 | $ 0.5t+\sqrt{5t-1}+1 $ | 1 |
5942 | $ {\mathrm{e}}^{-\frac{200}{t}} $ | 1 |
5943 | $ \, x \, $ | 1 |
5944 | $ \, x \, $ | 1 |
5945 | $ \cos\left(x\right)+5{x}^{-2} $ | 1 |
5946 | $ 2x+3y $ | 1 |
5947 | $ \dfrac{1-\cos\left(x\right)}{\sin\left(x\right)} $ | 1 |
5948 | $ \, x \, $ | 1 |
5949 | $ 0.5t+\sqrt{5t-1}+1 $ | 1 |
5950 | $ \, x \, $ | 1 |