Math Calculators, Lessons and Formulas

It is time to solve your math problem

mathportal.org
  • Radicals
  • Tests on rationalizing denominator
  • Rationalizing denominator with two or more terms

Rationalizing denominator with two or more terms

ans:
syntax error
C
DEL
ANS
±
(
)
÷
×
7
8
9
4
5
6
+
1
2
3
=
0
.
auto next question
evaluate answers
calculator
  • Question 1:
    1 pts
    The conjugate of 2+22+\sqrt{2} is 222-\sqrt{2}
  • Question 2:
    1 pts
    The conjugate of a1-\sqrt{a}-1 is a+1\sqrt{a}+1
  • Question 3:
    1 pts
    To rationalize denominator in 12+1\frac{1}{\sqrt{2}+1} we multiply both numerator and denominator with.
    1+21+\sqrt{2}
    121-\sqrt{2}
    21\sqrt{2}-1
  • Question 4:
    1 pts
    To rationalize denominator in 132\frac{1}{\sqrt{3}-\sqrt{2}} we multiply both numerator and denominator with.
    3+2\sqrt{3}+\sqrt{2}
    32\sqrt{3}-\sqrt{2}
    23\sqrt{2}-\sqrt{3}
  • Question 5:
    1 pts
    Is the following equation true or false: 132=3+2\frac{1}{\sqrt{3}-\sqrt{2}} = \sqrt{3}+\sqrt{2}
  • Question 6:
    2 pts
    Rationalize denominator 123\frac{1}{2-\sqrt{3}}
    4+34+\sqrt{3}
    434-\sqrt{3}
    2+32+\sqrt{3}
  • Question 7:
    2 pts
    Rationalize denominator: 323+2\frac{\sqrt{3} - \sqrt{2} } {\sqrt{3} + \sqrt{2}}
    5+65 + \sqrt{6}
    565 - \sqrt{6}
    5+265 + 2\sqrt{6}
    5265 - 2\sqrt{6}
  • Question 8:
    2 pts
    Rationalize denominator: 202010\frac{20} {\sqrt{20} - \sqrt{10}}
    20(20+10)10\frac{20(\sqrt{20} +\sqrt{10})}{10}
    2(20+10)2(\sqrt{20} +\sqrt{10})
    2(2010)2(\sqrt{20} - \sqrt{10})
  • Question 9:
    3 pts
    Is the following equation true or false: 8+222=9+52\frac{8+\sqrt{2}}{2-\sqrt{2}}=9+5\sqrt{2}
  • Question 10:
    3 pts
    Is the following equation true or false: 3+423=3+22+23+6\frac{\sqrt{3}+\sqrt{4}}{\sqrt{2}-\sqrt{3}}=3+2\sqrt{2}+2\sqrt{3}+\sqrt{6}
  • Question 11:
    3 pts
    Rationalize denominator: aa+1\frac{\sqrt{a}} {\sqrt{a} + 1}
    aaa1\frac{a-\sqrt{a}}{a-1}
    aaa+1\frac{a-\sqrt{a}}{a+1}
    aa1\frac{a}{a-1}
    aa+1\frac{\sqrt{a}}{a+1}
  • Question 12:
    3 pts
    Rationalize denominator: x293x\frac{x^2-9} {\sqrt{3} - \sqrt{x}}
    (x+3)(3+x)(x+3)(\sqrt{3}+\sqrt{x})
    (x+3)(3+x)-(x+3)(\sqrt{3} + \sqrt{x})
    (x+3)(x3)(x+3)(\sqrt{x}-\sqrt{3})