Vectors
(the database of solved problems)
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
1651 | Calculate the dot product of the vectors $ \vec{v_1} = \left(8,~2\right) $ and $ \vec{v_2} = \left(-6,~8\right) $ . | 2 |
1652 | Find the sum of the vectors $ \vec{v_1} = \left(-6,~-7\right) $ and $ \vec{v_2} = \left(3,~-3\right) $ . | 2 |
1653 | Find the magnitude of the vector $ \| \vec{v} \| = \left(6,~4\right) $ . | 2 |
1654 | Find the angle between vectors $ \left(6,~4\right)$ and $\left(6,~0\right)$. | 2 |
1655 | Find the difference of the vectors $ \vec{v_1} = \left(6,~0\right) $ and $ \vec{v_2} = \left(6,~4\right) $ . | 2 |
1656 | Find the difference of the vectors $ \vec{v_1} = \left(-3,~-2\right) $ and $ \vec{v_2} = \left(-3,~-4\right) $ . | 2 |
1657 | Find the magnitude of the vector $ \| \vec{v} \| = \left(3,~-1\right) $ . | 2 |
1658 | Find the difference of the vectors $ \vec{v_1} = \left(0,~5\right) $ and $ \vec{v_2} = \left(3,~-1\right) $ . | 2 |
1659 | Find the difference of the vectors $ \vec{v_1} = \left(-6,~-6\right) $ and $ \vec{v_2} = \left(-8,~0\right) $ . | 2 |
1660 | Find the sum of the vectors $ \vec{v_1} = \left(-5,~6\right) $ and $ \vec{v_2} = \left(8,~-4\right) $ . | 2 |
1661 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~-3\right) $ . | 2 |
1662 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-\dfrac{ 61 }{ 10 },~\dfrac{ 17 }{ 2 }\right) $ . | 2 |
1663 | Find the sum of the vectors $ \vec{v_1} = \left(-\dfrac{ 61 }{ 10 },~\dfrac{ 17 }{ 2 }\right) $ and $ \vec{v_2} = \left(-5,~\dfrac{ 9 }{ 2 }\right) $ . | 2 |
1664 | Calculate the dot product of the vectors $ \vec{v_1} = \left(0,~0\right) $ and $ \vec{v_2} = \left(2,~5\right) $ . | 2 |
1665 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-2,~3\right) $ . | 2 |
1666 | Find the sum of the vectors $ \vec{v_1} = \left(2,~4\right) $ and $ \vec{v_2} = \left(-1,~5\right) $ . | 2 |
1667 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-8,~-3\right) $ and $ \vec{v_2} = \left(-8,~2\right) $ . | 2 |
1668 | Find the sum of the vectors $ \vec{v_1} = \left(-8,~-3\right) $ and $ \vec{v_2} = \left(-8,~2\right) $ . | 2 |
1669 | Find the magnitude of the vector $ \| \vec{v} \| = \left(\dfrac{ 9 }{ 7 },~0\right) $ . | 2 |
1670 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~-3\right) $ . | 2 |
1671 | Find the difference of the vectors $ \vec{v_1} = \left(-4,~-6\right) $ and $ \vec{v_2} = \left(9,~-3\right) $ . | 2 |
1672 | Find the sum of the vectors $ \vec{v_1} = \left(12,~12\right) $ and $ \vec{v_2} = \left(-5,~\dfrac{ 9 }{ 2 }\right) $ . | 2 |
1673 | Find the difference of the vectors $ \vec{v_1} = \left(1,~3\right) $ and $ \vec{v_2} = \left(14,~18\right) $ . | 2 |
1674 | Find the sum of the vectors $ \vec{v_1} = \left(-6,~-15\right) $ and $ \vec{v_2} = \left(14,~8\right) $ . | 2 |
1675 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-2,~-2\right) $ . | 2 |
1676 | Calculate the dot product of the vectors $ \vec{v_1} = \left(4,~6\right) $ and $ \vec{v_2} = \left(10,~1\right) $ . | 2 |
1677 | Find the angle between vectors $ \left(4,~6\right)$ and $\left(10,~1\right)$. | 2 |
1678 | Find the angle between vectors $ \left(\sqrt{ 7 },~\sqrt{ 8 }\right)$ and $\left(\sqrt{ 8 },~\sqrt{ 7 }\right)$. | 2 |
1679 | Calculate the dot product of the vectors $ \vec{v_1} = \left(25,~20\right) $ and $ \vec{v_2} = \left(6,~-6\right) $ . | 2 |
1680 | Calculate the cross product of the vectors $ \vec{v_1} = \left(2,~2,~2\right) $ and $ \vec{v_2} = \left(0,~0,~0\right) $ . | 2 |
1681 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~-40,~0\right) $ . | 2 |
1682 | Find the magnitude of the vector $ \| \vec{v} \| = \left(7,~5\right) $ . | 2 |
1683 | Find the sum of the vectors $ \vec{v_1} = \left(-3,~1\right) $ and $ \vec{v_2} = \left(-1,~5\right) $ . | 2 |
1684 | Find the sum of the vectors $ \vec{v_1} = \left(-1,~2\right) $ and $ \vec{v_2} = \left(-2,~3\right) $ . | 2 |
1685 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~-5\right) $ . | 2 |
1686 | Calculate the dot product of the vectors $ \vec{v_1} = \left(2,~-1\right) $ and $ \vec{v_2} = \left(-3,~3\right) $ . | 2 |
1687 | Calculate the cross product of the vectors $ \vec{v_1} = \left(6,~0,~0\right) $ and $ \vec{v_2} = \left(-7,~4,~0\right) $ . | 2 |
1688 | Calculate the dot product of the vectors $ \vec{v_1} = \left(0,~6\right) $ and $ \vec{v_2} = \left(-7,~4\right) $ . | 2 |
1689 | Calculate the cross product of the vectors $ \vec{v_1} = \left(0,~6,~0\right) $ and $ \vec{v_2} = \left(-7,~4,~0\right) $ . | 2 |
1690 | Find the angle between vectors $ \left(11,~1\right)$ and $\left(3,~8\right)$. | 2 |
1691 | Find the angle between vectors $ \left(3,~1\right)$ and $\left(-4,~-3\right)$. | 2 |
1692 | Find the magnitude of the vector $ \| \vec{v} \| = \left(9,~\sqrt{ 19 }\right) $ . | 2 |
1693 | Find the angle between vectors $ \left(3,~4\right)$ and $\left(3,~-4\right)$. | 2 |
1694 | Find the projection of the vector $ \vec{v_1} = \left(1,~3\right) $ on the vector $ \vec{v_2} = \left(3,~-3\right) $. | 2 |
1695 | Calculate the dot product of the vectors $ \vec{v_1} = \left(5,~-3\right) $ and $ \vec{v_2} = \left(4,~0\right) $ . | 2 |
1696 | Find the difference of the vectors $ \vec{v_1} = \left(55,~-10\right) $ and $ \vec{v_2} = \left(30,~12\right) $ . | 2 |
1697 | Calculate the dot product of the vectors $ \vec{v_1} = \left(3,~2\right) $ and $ \vec{v_2} = \left(4,~6\right) $ . | 2 |
1698 | Calculate the dot product of the vectors $ \vec{v_1} = \left(100,~200,~-50\right) $ and $ \vec{v_2} = \left(0,~0,~0\right) $ . | 2 |
1699 | Find the magnitude of the vector $ \| \vec{v} \| = \left(7,~4\right) $ . | 2 |
1700 | Find the difference of the vectors $ \vec{v_1} = \left(0,~5\right) $ and $ \vec{v_2} = \left(0,~8\right) $ . | 2 |