Vectors – Solved Problems Database
All the problems and solutions shown below were generated using the Vectors Calculator.
ID |
Problem |
Count |
801 | Find the angle between vectors $ \left(-2,~0,~-3\right)$ and $\left(1,~-3,~-1\right)$. | 2 |
802 | Find the projection of the vector $ \vec{v_1} = \left(-5,~2,~0\right) $ on the vector $ \vec{v_2} = \left(-1,~8,~-4\right) $. | 2 |
803 | Calculate the dot product of the vectors $ \vec{v_1} = \left(9,~9,~9\right) $ and $ \vec{v_2} = \left(9,~9,~9\right) $ . | 2 |
804 | Find the magnitude of the vector $ \| \vec{v} \| = \left(4,~5\right) $ . | 2 |
805 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-2,~-4\right) $ . | 2 |
806 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-\dfrac{ 3 }{ 5 },~\dfrac{ 4 }{ 5 }\right) $ . | 2 |
807 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-\dfrac{ 9 }{ 41 },~\dfrac{ 40 }{ 41 }\right) $ . | 2 |
808 | Find the angle between vectors $ \left(-1,~6\right)$ and $\left(2,~7\right)$. | 2 |
809 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-0.3846,~0.9231\right) $ . | 2 |
810 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0.8,~0.2\right) $ . | 2 |
811 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-\dfrac{ 3 }{ 5 },~\dfrac{ 4 }{ 5 }\right) $ . | 2 |
812 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-3,~2\right) $ . | 2 |
813 | Find the difference of the vectors $ \vec{v_1} = \left(-3,~4\right) $ and $ \vec{v_2} = \left(-2,~7\right) $ . | 2 |
814 | Calculate the dot product of the vectors $ \vec{v_1} = \left(0,~\dfrac{ 1 }{ 2 }\right) $ and $ \vec{v_2} = \left(0,~0\right) $ . | 2 |
815 | Find the sum of the vectors $ \vec{v_1} = \left(\dfrac{ 8 }{ 9 },~-\dfrac{ 40 }{ 9 }\right) $ and $ \vec{v_2} = \left(6,~56\right) $ . | 2 |
816 | Find the projection of the vector $ \vec{v_1} = \left(2,~-5\right) $ on the vector $ \vec{v_2} = \left(-6,~-4\right) $. | 2 |
817 | Find the angle between vectors $ \left(3,~5\right)$ and $\left(0,~-4\right)$. | 2 |
818 | Find the projection of the vector $ \vec{v_1} = \left(3,~5\right) $ on the vector $ \vec{v_2} = \left(0,~-4\right) $. | 2 |
819 | Find the angle between vectors $ \left(\dfrac{ 8 }{ 3 },~\dfrac{ 8 }{ 3 }\right)$ and $\left(7,~-7\right)$. | 2 |
820 | Calculate the dot product of the vectors $ \vec{v_1} = \left(\dfrac{ 8 }{ 3 },~\dfrac{ 8 }{ 3 }\right) $ and $ \vec{v_2} = \left(7,~-7\right) $ . | 2 |
821 | Find the angle between vectors $ \left(-\dfrac{ 1 }{ 2 },~- \dfrac{\sqrt{ 3 }}{ 2 }\right)$ and $\left(\dfrac{\sqrt{ 2 }}{ 2 },~- \dfrac{\sqrt{ 2 }}{ 2 }\right)$. | 2 |
822 | Find the projection of the vector $ \vec{v_1} = \left(-\dfrac{ 1 }{ 2 },~- \dfrac{\sqrt{ 3 }}{ 2 }\right) $ on the vector $ \vec{v_2} = \left(\dfrac{\sqrt{ 2 }}{ 2 },~- \dfrac{\sqrt{ 2 }}{ 2 }\right) $. | 2 |
823 | Find the angle between vectors $ \left(5,~-2\right)$ and $\left(-7,~-3\right)$. | 2 |
824 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-1,~-3\right) $ . | 2 |
825 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-5,~2\right) $ . | 2 |
826 | Find the magnitude of the vector $ \| \vec{v} \| = \left(5,~-2\right) $ . | 2 |
827 | Find the difference of the vectors $ \vec{v_1} = \left(3,~9\right) $ and $ \vec{v_2} = \left(-6,~-7\right) $ . | 2 |
828 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~2\right) $ . | 2 |
829 | Find the difference of the vectors $ \vec{v_1} = \left(1,~2\right) $ and $ \vec{v_2} = \left(1,~2\right) $ . | 2 |
830 | Find the projection of the vector $ \vec{v_1} = \left(\dfrac{ 4 }{ 3 },~-6\right) $ on the vector $ \vec{v_2} = \left(9,~-\dfrac{ 3 }{ 2 }\right) $. | 2 |
831 | Calculate the cross product of the vectors $ \vec{v_1} = \left(1,~2,~-3\right) $ and $ \vec{v_2} = \left(4,~-5,~6\right) $ . | 2 |
832 | Calculate the dot product of the vectors $ \vec{v_1} = \left(7,~1\right) $ and $ \vec{v_2} = \left(2,~9\right) $ . | 2 |
833 | Find the angle between vectors $ \left(7,~1\right)$ and $\left(2,~9\right)$. | 2 |
834 | Find the sum of the vectors $ \vec{v_1} = \left(2,~1\right) $ and $ \vec{v_2} = \left(1,~3\right) $ . | 2 |
835 | Calculate the cross product of the vectors $ \vec{v_1} = \left(1,~2,~-4\right) $ and $ \vec{v_2} = \left(4,~-5,~6\right) $ . | 2 |
836 | Find the magnitude of the vector $ \| \vec{v} \| = \left(1,~13\right) $ . | 2 |
837 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~10\right) $ . | 2 |
838 | Find the magnitude of the vector $ \| \vec{v} \| = \left(-5,~-5\right) $ . | 2 |
839 | Find the difference of the vectors $ \vec{v_1} = \left(-3,~10\right) $ and $ \vec{v_2} = \left(5,~7\right) $ . | 2 |
840 | Find the magnitude of the vector $ \| \vec{v} \| = \left(0,~0\right) $ . | 2 |
841 | Calculate the dot product of the vectors $ \vec{v_1} = \left(-3,~10\right) $ and $ \vec{v_2} = \left(5,~7\right) $ . | 2 |
842 | Find the angle between vectors $ \left(-3,~10\right)$ and $\left(5,~7\right)$. | 2 |
843 | Find the magnitude of the vector $ \| \vec{v} \| = \left(15,~-41\right) $ . | 2 |
844 | Find the sum of the vectors $ \vec{v_1} = \left(15,~-41\right) $ and $ \vec{v_2} = \left(29,~37\right) $ . | 2 |
845 | Find the projection of the vector $ \vec{v_1} = \left(2345,~2234\right) $ on the vector $ \vec{v_2} = \left(4721,~4576\right) $. | 2 |
846 | Find the sum of the vectors $ \vec{v_1} = \left(9,~8\right) $ and $ \vec{v_2} = \left(2,~0\right) $ . | 2 |
847 | Calculate the dot product of the vectors $ \vec{v_1} = \left(8,~-7\right) $ and $ \vec{v_2} = \left(-11,~-4\right) $ . | 2 |
848 | Find the angle between vectors $ \left(4,~-5\right)$ and $\left(3,~7\right)$. | 2 |
849 | Find the magnitude of the vector $ \| \vec{v} \| = \left(80,~28\right) $ . | 2 |
850 | Find the magnitude of the vector $ \| \vec{v} \| = \left(2,~10\right) $ . | 2 |