Triangle in 2D – Solved Problems Database
All the problems and solutions shown below were generated using the Triangle Calculator.
ID |
Problem |
Count |
1 | Find the area of triangle $A=\left(2,~1\right)$ $B=\left(3,~-2\right)$ $C=\left(-4,~-1\right)$. | 32 |
2 | Find the circumcenter of triangle $A=\left(1,~5\right)$ $B=\left(3,~3\right)$ $C=\left(3,~5\right)$. | 31 |
3 | Find the medians of triangle $A=\left(4,~7\right)$ $B=\left(6,~-1\right)$ $C=\left(-2,~3\right)$. | 13 |
4 | Find the orthocenter of triangle $\left(1,~-1\right)$ $\left(-2,~1\right)$ $\left(1,~-3\right)$. | 12 |
5 | Find the medians of triangle $\left(3,~4\right)$ $\left(-5,~2\right)$ $\left(1,~-4\right)$. | 11 |
6 | Find the circumcenter of triangle $\left(1,~-1\right)$ $\left(-2,~1\right)$ $\left(1,~-3\right)$. | 11 |
7 | Find the area of triangle $A=\left(4,~4\right)$ $B=\left(-2,~3\right)$ $C=\left(-4,~-5\right)$. | 10 |
8 | Find the medians of triangle $A=\left(-1,~2\right)$ $B=\left(3,~4\right)$ $C=\left(1,~5\right)$. | 10 |
9 | Find the orthocenter of triangle $A=\left(-2,~5\right)$ $B=\left(5,~1\right)$ $C=\left(-4,~-5\right)$. | 10 |
10 | Find the centroid of triangle $A=\left(4,~7\right)$ $B=\left(6,~-1\right)$ $C=\left(-2,~3\right)$. | 9 |
11 | Find the incenter of triangle $A=\left(-\dfrac{ 5 }{ 3 },~\dfrac{ 245 }{ 9 }\right)$ $B=\left(15,~5\right)$ $C=\left(0,~5\right)$. | 9 |
12 | Find the incenter of triangle $\left(1,~3\right)$ $\left(6,~4\right)$ $\left(2,~11\right)$. | 9 |
13 | Find the medians of triangle $A=\left(-6,~-4\right)$ $B=\left(6,~5\right)$ $C=\left(10,~-2\right)$. | 8 |
14 | Find the centroid of triangle $\left(-4,~0\right)$ $\left(6,~0\right)$ $\left(0,~6\right)$. | 8 |
15 | Find the circumcenter of triangle $\left(7,~0\right)$ $\left(0,~7\right)$ $\left(-8,~-5\right)$. | 7 |
16 | Find the area of triangle $A=\left(-3,~5\right)$ $B=\left(3,~2\right)$ $C=\left(1,~-2\right)$. | 7 |
17 | Find the area of triangle $A=\left(0,~0\right)$ $B=\left(0,~2\right)$ $C=\left(3,~4\right)$. | 7 |
18 | Find the medians of triangle $A=\left(1,~7\right)$ $B=\left(2,~3\right)$ $C=\left(6,~7\right)$. | 7 |
19 | Find the altitudes of triangle $A=\left(0,~0\right)$ $B=\left(8,~0\right)$ $C=\left(4,~12\right)$. | 7 |
20 | Find the altitudes of triangle $\left(3,~4\right)$ $\left(-5,~2\right)$ $\left(1,~-4\right)$. | 7 |
21 | Find the altitudes of triangle $\left(6,~3\right)$ $\left(2,~5\right)$ $\left(-6,~-5\right)$. | 7 |
22 | Find the orthocenter of triangle $A=\left(0,~12\right)$ $B=\left(12,~6\right)$ $C=\left(0,~-16\right)$. | 7 |
23 | Find the area of triangle $A=\left(\dfrac{ 1 }{ 2 },~1\right)$ $B=\left(0,~4\right)$ $C=\left(-8,~0\right)$. | 6 |
24 | Find the orthocenter of triangle $\left(4,~5\right)$ $\left(3,~-6\right)$ $\left(10,~18\right)$. | 6 |
25 | Find the area of triangle $\left(3,~4\right)$ $\left(-5,~2\right)$ $\left(1,~-4\right)$. | 6 |
26 | Find the orthocenter of triangle $A=\left(-2,~1\right)$ $B=\left(2,~-1\right)$ $C=\left(0,~4\right)$. | 6 |
27 | Find the orthocenter of triangle $\left(-2,~7\right)$ $\left(1,~2\right)$ $\left(-4,~-1\right)$. | 6 |
28 | Find the circumcenter of triangle $\left(-2,~7\right)$ $\left(1,~2\right)$ $\left(-4,~-1\right)$. | 6 |
29 | Find the medians of triangle $\left(0,~0\right)$ $\left(7,~5\right)$ $\left(5,~0\right)$. | 6 |
30 | Find the medians of triangle $A=\left(4,~0\right)$ $B=\left(-1,~-1\right)$ $C=\left(11,~5\right)$. | 6 |
31 | Find the orthocenter of triangle $\left(2,~1\right)$ $\left(3,~8\right)$ $\left(6,~4\right)$. | 6 |
32 | Find the circumcenter of triangle $A=\left(-\dfrac{ 5 }{ 3 },~\dfrac{ 245 }{ 9 }\right)$ $B=\left(15,~5\right)$ $C=\left(0,~5\right)$. | 6 |
33 | Find the medians of triangle $\left(190,~300\right)$ $\left(290,~395\right)$ $\left(400,~300\right)$. | 6 |
34 | Find the altitudes of triangle $A=\left(1,~7\right)$ $B=\left(8,~11\right)$ $C=\left(11,~2\right)$. | 6 |
35 | Find the circumcenter of triangle $\left(2,~1\right)$ $\left(3,~8\right)$ $\left(6,~4\right)$. | 6 |
36 | Find the medians of triangle $A=\left(2,~0\right)$ $B=\left(3,~1\right)$ $C=\left(5,~7\right)$. | 5 |
37 | Find the medians of triangle $\left(4,~5\right)$ $\left(20,~25\right)$ $\left(30,~6\right)$. | 5 |
38 | Find the orthocenter of triangle $A=\left(-\dfrac{ 5 }{ 3 },~\dfrac{ 245 }{ 9 }\right)$ $B=\left(0,~5\right)$ $C=\left(15,~5\right)$. | 5 |
39 | Find the altitudes of triangle $A=\left(-\dfrac{ 5 }{ 3 },~\dfrac{ 245 }{ 9 }\right)$ $B=\left(15,~5\right)$ $C=\left(0,~5\right)$. | 5 |
40 | Find the circumcenter of triangle $\left(5,~6\right)$ $\left(-1,~10\right)$ $\left(0,~-3\right)$. | 5 |
41 | Find the medians of triangle $\left(-1,~3\right)$ $\left(1,~5\right)$ $\left(3,~1\right)$. | 5 |
42 | Find the altitudes of triangle $A=\left(15,~7\right)$ $B=\left(6,~11\right)$ $C=\left(26,~1\right)$. | 5 |
43 | Find the area of triangle $A=\left(0,~-8\right)$ $B=\left(-2,~-3\right)$ $C=\left(8,~1\right)$. | 5 |
44 | Find the medians of triangle $A=\left(0,~0\right)$ $B=\left(4,~4\right)$ $C=\left(8,~-4\right)$. | 5 |
45 | Find the orthocenter of triangle $A=\left(0,~0\right)$ $B=\left(0,~60\right)$ $C=\left(96,~48\right)$. | 5 |
46 | Find the medians of triangle $A=\left(0,~0\right)$ $B=\left(8,~6\right)$ $C=\left(12,~0\right)$. | 5 |
47 | Find the area of triangle $\left(2,~0\right)$ $\left(6,~8\right)$ $\left(-2,~-4\right)$. | 5 |
48 | Find the orthocenter of triangle $A=\left(4,~-3\right)$ $B=\left(-1,~-2\right)$ $C=\left(7,~3\right)$. | 5 |
49 | Find the medians of triangle $A=\left(4,~4\right)$ $B=\left(-6,~2\right)$ $C=\left(2,~0\right)$. | 5 |
50 | Find the area of triangle $\left(-3,~-2\right)$ $\left(-2,~5\right)$ $\left(1,~1\right)$. | 5 |