Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\frac{\frac{y^7}{28}}{y^5}}{24y}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\frac{y^7}{28y^5}}{24y} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{y^7}{672y^6}\end{aligned} $$ | |
① | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{y^7}{28} }{y^5} & \xlongequal{\text{Step 1}} \frac{y^7}{28} \cdot \frac{\color{blue}{1}}{\color{blue}{y^5}} \xlongequal{\text{Step 2}} \frac{ y^7 \cdot 1 }{ 28 \cdot y^5 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ y^7 }{ 28y^5 } \end{aligned} $$ |
② | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{y^7}{28y^5} }{24y} & \xlongequal{\text{Step 1}} \frac{y^7}{28y^5} \cdot \frac{\color{blue}{1}}{\color{blue}{24y}} \xlongequal{\text{Step 2}} \frac{ y^7 \cdot 1 }{ 28y^5 \cdot 24y } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ y^7 }{ 672y^6 } \end{aligned} $$ |