Tap the blue circles to see an explanation.
$$ \begin{aligned}x\cdot3-2x\cdot2-25x+\frac{50}{x}\cdot2-25& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3x-4x-25x+\frac{50}{x}\cdot2-25 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-26x+\frac{50}{x}\cdot2-25 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-26x+\frac{100}{x}-25 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-26x^2+100}{x}-25 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{-26x^2-25x+100}{x}\end{aligned} $$ | |
① | $$ 2 x \cdot 2 = 4 x $$ |
② | Combine like terms: $$ \color{blue}{3x} \color{red}{-4x} \color{red}{-25x} = \color{red}{-26x} $$ |
③ | Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{50}{x} \cdot 2 & \xlongequal{\text{Step 1}} \frac{50}{x} \cdot \frac{2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 50 \cdot 2 }{ x \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 100 }{ x } \end{aligned} $$ |
④ | Step 1: Write $ -26x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
⑤ | Step 1: Write $ 25 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |