Tap the blue circles to see an explanation.
$$ \begin{aligned}x^2+5x+\frac{6}{4}x+3& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^2+5x + \frac{ 6 : \color{orangered}{ 2 } }{ 4 : \color{orangered}{ 2 }} \cdot x + 3 \xlongequal{ } \\[1 em] & \xlongequal{ }x^2+5x+\frac{3}{2}x+3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^2+5x+\frac{3x}{2}+3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{2x^2+13x}{2}+3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{2x^2+13x+6}{2}\end{aligned} $$ | |
① | Divide both the top and bottom numbers by $ \color{orangered}{ 2 } $. |
② | Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{3}{2} \cdot x & \xlongequal{\text{Step 1}} \frac{3}{2} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 3 \cdot x }{ 2 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ 3x }{ 2 } \end{aligned} $$ |
③ | Step 1: Write $ x^2+5x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
④ | Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |