Tap the blue circles to see an explanation.
$$ \begin{aligned}x^2-\frac{81}{2}x^2+18x& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^2-\frac{81x^2}{2}+18x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-\frac{79x^2}{2}+18x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-79x^2+36x}{2}\end{aligned} $$ | |
① | Step 1: Write $ x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{81}{2} \cdot x^2 & \xlongequal{\text{Step 1}} \frac{81}{2} \cdot \frac{x^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 81 \cdot x^2 }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 81x^2 }{ 2 } \end{aligned} $$ |
② | Step 1: Write $ x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
③ | Step 1: Write $ 18x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |