Tap the blue circles to see an explanation.
$$ \begin{aligned}x^2-\frac{1}{x^2}-6x+5& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{x^4-1}{x^2}-6x+5 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{x^4-6x^3-1}{x^2}+5 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{x^4-6x^3+5x^2-1}{x^2}\end{aligned} $$ | |
① | Step 1: Write $ x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
② | Step 1: Write $ 6x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
③ | Step 1: Write $ 5 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |