Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{x}{7x+8}+8\frac{x}{7x+8}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{x}{7x+8}+\frac{8x}{7x+8} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{9x}{7x+8}\end{aligned} $$ | |
① | Step 1: Write $ 8 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 8 \cdot \frac{x}{7x+8} & \xlongequal{\text{Step 1}} \frac{8}{\color{red}{1}} \cdot \frac{x}{7x+8} \xlongequal{\text{Step 2}} \frac{ 8 \cdot x }{ 1 \cdot \left( 7x+8 \right) } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 8x }{ 7x+8 } \end{aligned} $$ |
② | To add expressions with the same denominators, we add the numerators and write the result over the common denominator. $$ \begin{aligned} \frac{x}{7x+8} + \frac{8x}{7x+8} & = \frac{x}{\color{blue}{7x+8}} + \frac{8x}{\color{blue}{7x+8}} =\frac{ x + 8x }{ \color{blue}{ 7x+8 }} = \\[1ex] &= \frac{9x}{7x+8} \end{aligned} $$ |