Tap the blue circles to see an explanation.
$$ \begin{aligned}s\frac{t^4}{2}-(6s+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{st^4}{2}-(6s+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{st^4-12s-2}{2}\end{aligned} $$ | |
① | Step 1: Write $ s $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} s \cdot \frac{t^4}{2} & \xlongequal{\text{Step 1}} \frac{s}{\color{red}{1}} \cdot \frac{t^4}{2} \xlongequal{\text{Step 2}} \frac{ s \cdot t^4 }{ 1 \cdot 2 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ st^4 }{ 2 } \end{aligned} $$ |
② | Step 1: Write $ 6s+1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |