Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{m}{m}\cdot2-3m& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2m}{m}-3m \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-3m^2+2m}{m}\end{aligned} $$ | |
① | Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{m}{m} \cdot 2 & \xlongequal{\text{Step 1}} \frac{m}{m} \cdot \frac{2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ m \cdot 2 }{ m \cdot 1 } \xlongequal{\text{Step 3}} \frac{ 2m }{ m } \end{aligned} $$ |
② | Step 1: Write $ 3m $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |