Tap the blue circles to see an explanation.
$$ \begin{aligned}b^2-\frac{64}{8}-b& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}b^2 - \frac{ 64 : \color{orangered}{ 8 } }{ 8 : \color{orangered}{ 8 }} - b \xlongequal{ } \\[1 em] & \xlongequal{ }b^2-\frac{8}{1}-b \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}b^2-8-b \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}b^2-b-8\end{aligned} $$ | |
① | Divide both the top and bottom numbers by $ \color{orangered}{ 8 } $. |
② | Remove 1 from denominator. |
③ | Combine like terms: $$ b^2-b-8 = b^2-b-8 $$ |