Tap the blue circles to see an explanation.
$$ \begin{aligned}a^2+2 \cdot \frac{a}{2}a+4& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}a^2+aa+4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}a^2+a^2+4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}2a^2+4\end{aligned} $$ | |
① | Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Cancel $ \color{blue}{ 2 } $ in first and second fraction. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} 2 \cdot \frac{a}{2} & \xlongequal{\text{Step 1}} \frac{2}{\color{red}{1}} \cdot \frac{a}{2} \xlongequal{\text{Step 2}} \frac{\color{blue}{1}}{1} \cdot \frac{a}{\color{blue}{1}} = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 1 \cdot a }{ 1 \cdot 1 } \xlongequal{\text{Step 4}} \frac{ a }{ 1 } =a \end{aligned} $$ |
② | $$ 1 a a = a^{1 + 1} = a^2 $$ |
③ | Combine like terms: $$ \color{blue}{a^2} + \color{blue}{a^2} +4 = \color{blue}{2a^2} +4 $$ |