Tap the blue circles to see an explanation.
$$ \begin{aligned}9 \cdot \frac{x^2}{36}x^2-180x& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{9x^2}{36}x^2-180x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{9x^4}{36}-180x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{9x^4-6480x}{36}\end{aligned} $$ | |
① | Step 1: Write $ 9 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 9 \cdot \frac{x^2}{36} & \xlongequal{\text{Step 1}} \frac{9}{\color{red}{1}} \cdot \frac{x^2}{36} \xlongequal{\text{Step 2}} \frac{ 9 \cdot x^2 }{ 1 \cdot 36 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 9x^2 }{ 36 } \end{aligned} $$ |
② | Step 1: Write $ x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{9x^2}{36} \cdot x^2 & \xlongequal{\text{Step 1}} \frac{9x^2}{36} \cdot \frac{x^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 9x^2 \cdot x^2 }{ 36 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 9x^4 }{ 36 } \end{aligned} $$ |
③ | Step 1: Write $ 180x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |