Tap the blue circles to see an explanation.
$$ \begin{aligned}9 \cdot \frac{x^2}{x^2-81}+9\frac{x}{x+9}+\frac{9}{x-9}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(\frac{x^2}{x^2-81}+\frac{x}{x+9})\cdot9+\frac{9}{x-9} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2x^2-9x}{x^2-81}\cdot9+\frac{9}{x-9} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{18x^2-81x}{x^2-81}+\frac{9}{x-9} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{18x^2-72x+81}{x^2-81}\end{aligned} $$ | |
① | Use the distributive property. |
② | To add raitonal expressions, both fractions must have the same denominator. |
③ | Step 1: Write $ 9 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{2x^2-9x}{x^2-81} \cdot 9 & \xlongequal{\text{Step 1}} \frac{2x^2-9x}{x^2-81} \cdot \frac{9}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( 2x^2-9x \right) \cdot 9 }{ \left( x^2-81 \right) \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 18x^2-81x }{ x^2-81 } \end{aligned} $$ |
④ | To add raitonal expressions, both fractions must have the same denominator. |