Tap the blue circles to see an explanation.
$$ \begin{aligned}9-4 \cdot \frac{a^2}{10}a-15& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}9-\frac{4a^2}{10}a-15 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}9-\frac{4a^3}{10}-15 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-4a^3+90}{10}-15 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-4a^3-60}{10}\end{aligned} $$ | |
① | Step 1: Write $ 4 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 4 \cdot \frac{a^2}{10} & \xlongequal{\text{Step 1}} \frac{4}{\color{red}{1}} \cdot \frac{a^2}{10} \xlongequal{\text{Step 2}} \frac{ 4 \cdot a^2 }{ 1 \cdot 10 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 4a^2 }{ 10 } \end{aligned} $$ |
② | Step 1: Write $ a $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{4a^2}{10} \cdot a & \xlongequal{\text{Step 1}} \frac{4a^2}{10} \cdot \frac{a}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 4a^2 \cdot a }{ 10 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 4a^3 }{ 10 } \end{aligned} $$ |
③ | Step 1: Write $ 9 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
④ | Step 1: Write $ 15 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |