Tap the blue circles to see an explanation.
$$ \begin{aligned}8x^4\frac{y^3}{24}x^2y& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{8x^4y^3}{24}x^2y \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{8x^6y^3}{24}y \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{8x^6y^4}{24}\end{aligned} $$ | |
① | Step 1: Write $ 8x^4 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 8x^4 \cdot \frac{y^3}{24} & \xlongequal{\text{Step 1}} \frac{8x^4}{\color{red}{1}} \cdot \frac{y^3}{24} \xlongequal{\text{Step 2}} \frac{ 8x^4 \cdot y^3 }{ 1 \cdot 24 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 8x^4y^3 }{ 24 } \end{aligned} $$ |
② | Step 1: Write $ x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{8x^4y^3}{24} \cdot x^2 & \xlongequal{\text{Step 1}} \frac{8x^4y^3}{24} \cdot \frac{x^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 8x^4y^3 \cdot x^2 }{ 24 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 8x^6y^3 }{ 24 } \end{aligned} $$ |
③ | Step 1: Write $ y $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{8x^6y^3}{24} \cdot y & \xlongequal{\text{Step 1}} \frac{8x^6y^3}{24} \cdot \frac{y}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 8x^6y^3 \cdot y }{ 24 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 8x^6y^4 }{ 24 } \end{aligned} $$ |