Tap the blue circles to see an explanation.
$$ \begin{aligned}8 \cdot \frac{x^2}{12}x^4& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{8x^2}{12}x^4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{8x^6}{12}\end{aligned} $$ | |
① | Step 1: Write $ 8 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 8 \cdot \frac{x^2}{12} & \xlongequal{\text{Step 1}} \frac{8}{\color{red}{1}} \cdot \frac{x^2}{12} \xlongequal{\text{Step 2}} \frac{ 8 \cdot x^2 }{ 1 \cdot 12 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 8x^2 }{ 12 } \end{aligned} $$ |
② | Step 1: Write $ x^4 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{8x^2}{12} \cdot x^4 & \xlongequal{\text{Step 1}} \frac{8x^2}{12} \cdot \frac{x^4}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 8x^2 \cdot x^4 }{ 12 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 8x^6 }{ 12 } \end{aligned} $$ |