Tap the blue circles to see an explanation.
$$ \begin{aligned}8c+3+b\frac{c^5}{3}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}8c+3+\frac{bc^5}{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{bc^5+24c+9}{3}\end{aligned} $$ | |
① | Step 1: Write $ b $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} b \cdot \frac{c^5}{3} & \xlongequal{\text{Step 1}} \frac{b}{\color{red}{1}} \cdot \frac{c^5}{3} \xlongequal{\text{Step 2}} \frac{ b \cdot c^5 }{ 1 \cdot 3 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ bc^5 }{ 3 } \end{aligned} $$ |
② | Step 1: Write $ 8c+3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |