Tap the blue circles to see an explanation.
$$ \begin{aligned}8c\frac{d}{3}+10& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{8cd}{3}+10 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{8cd+30}{3}\end{aligned} $$ | |
① | Step 1: Write $ 8c $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 8c \cdot \frac{d}{3} & \xlongequal{\text{Step 1}} \frac{8c}{\color{red}{1}} \cdot \frac{d}{3} \xlongequal{\text{Step 2}} \frac{ 8c \cdot d }{ 1 \cdot 3 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 8cd }{ 3 } \end{aligned} $$ |
② | Step 1: Write $ 10 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |