Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{8}{2}-g+3& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{ 8 : \color{orangered}{ 2 } }{ 2 : \color{orangered}{ 2 }} - g + 3 \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{4}{1}-g+3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4-g+3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-g+7\end{aligned} $$ | |
① | Divide both the top and bottom numbers by $ \color{orangered}{ 2 } $. |
② | Remove 1 from denominator. |
③ | Combine like terms: $$ \color{blue}{4} -g+ \color{blue}{3} = -g+ \color{blue}{7} $$ |