Tap the blue circles to see an explanation.
$$ \begin{aligned}7 \cdot \frac{n}{n+1}+\frac{8}{n-7}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{7n}{n+1}+\frac{8}{n-7} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{7n^2-41n+8}{n^2-6n-7}\end{aligned} $$ | |
① | Step 1: Write $ 7 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 7 \cdot \frac{n}{n+1} & \xlongequal{\text{Step 1}} \frac{7}{\color{red}{1}} \cdot \frac{n}{n+1} \xlongequal{\text{Step 2}} \frac{ 7 \cdot n }{ 1 \cdot \left( n+1 \right) } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 7n }{ n+1 } \end{aligned} $$ |
② | To add raitonal expressions, both fractions must have the same denominator. |