Tap the blue circles to see an explanation.
$$ \begin{aligned}6-\frac{x+5}{7x-5}(x+4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}6-\frac{x^2+9x+20}{7x-5} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-x^2+33x-50}{7x-5}\end{aligned} $$ | |
① | Step 1: Write $ x+4 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{x+5}{7x-5} \cdot x+4 & \xlongequal{\text{Step 1}} \frac{x+5}{7x-5} \cdot \frac{x+4}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( x+5 \right) \cdot \left( x+4 \right) }{ \left( 7x-5 \right) \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x^2+4x+5x+20 }{ 7x-5 } = \frac{x^2+9x+20}{7x-5} \end{aligned} $$ |
② | Step 1: Write $ 6 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |