Tap the blue circles to see an explanation.
$$ \begin{aligned}6-\frac{x+5}{7x-5(x+4)}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}6-\frac{x+5}{7x-(5x+20)} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}6-\frac{x+5}{7x-5x-20} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}6-\frac{x+5}{2x-20} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{11x-125}{2x-20}\end{aligned} $$ | |
① | Multiply $ \color{blue}{5} $ by $ \left( x+4\right) $ $$ \color{blue}{5} \cdot \left( x+4\right) = 5x+20 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 5x+20 \right) = -5x-20 $$ |
③ | Combine like terms: $$ \color{blue}{7x} \color{blue}{-5x} -20 = \color{blue}{2x} -20 $$ |
④ | Step 1: Write $ 6 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |