Tap the blue circles to see an explanation.
$$ \begin{aligned}5 \cdot \frac{i}{9}-3i& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{5i}{9}-3i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-\frac{22i}{9}\end{aligned} $$ | |
① | Step 1: Write $ 5 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 5 \cdot \frac{i}{9} & \xlongequal{\text{Step 1}} \frac{5}{\color{red}{1}} \cdot \frac{i}{9} \xlongequal{\text{Step 2}} \frac{ 5 \cdot i }{ 1 \cdot 9 } \xlongequal{\text{Step 3}} \frac{ 5i }{ 9 } \end{aligned} $$ |
② | Step 1: Write $ 3i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |