Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{5}{n+5}+4\frac{n}{2n+6}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{5}{n+5}+\frac{4n}{2n+6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{4n^2+30n+30}{2n^2+16n+30} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{2n^2+15n+15}{n^2+8n+15}\end{aligned} $$ | |
① | Step 1: Write $ 4 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 4 \cdot \frac{n}{2n+6} & \xlongequal{\text{Step 1}} \frac{4}{\color{red}{1}} \cdot \frac{n}{2n+6} \xlongequal{\text{Step 2}} \frac{ 4 \cdot n }{ 1 \cdot \left( 2n+6 \right) } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 4n }{ 2n+6 } \end{aligned} $$ |
② | To add raitonal expressions, both fractions must have the same denominator. |