Tap the blue circles to see an explanation.
$$ \begin{aligned}4 \cdot \frac{x}{x^2-4+4}-3\frac{x}{x^2+4}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4 \cdot \frac{x}{x^2}-3\frac{x}{x^2+4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{4x}{x^2}-\frac{3x}{x^2+4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{x^3+16x}{x^4+4x^2} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{x^2+16}{x^3+4x}\end{aligned} $$ | |
① | $$ x^2 \, \color{blue}{ -\cancel{4}} \,+ \, \color{blue}{ \cancel{4}} \, = x^2 $$ |
② | Step 1: Write $ 4 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 4 \cdot \frac{x}{x^2} & \xlongequal{\text{Step 1}} \frac{4}{\color{red}{1}} \cdot \frac{x}{x^2} \xlongequal{\text{Step 2}} \frac{ 4 \cdot x }{ 1 \cdot x^2 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 4x }{ x^2 } \end{aligned} $$ |
③ | Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 3 \cdot \frac{x}{x^2+4} & \xlongequal{\text{Step 1}} \frac{3}{\color{red}{1}} \cdot \frac{x}{x^2+4} \xlongequal{\text{Step 2}} \frac{ 3 \cdot x }{ 1 \cdot \left( x^2+4 \right) } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 3x }{ x^2+4 } \end{aligned} $$ |
④ | To subtract raitonal expressions, both fractions must have the same denominator. |