Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{45}{10}x-15& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{ 45 : \color{orangered}{ 5 } }{ 10 : \color{orangered}{ 5 }} \cdot x - 15 \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{9}{2}x-15 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{9x}{2}-15 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{9x-30}{2}\end{aligned} $$ | |
① | Divide both the top and bottom numbers by $ \color{orangered}{ 5 } $. |
② | Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{9}{2} \cdot x & \xlongequal{\text{Step 1}} \frac{9}{2} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 9 \cdot x }{ 2 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ 9x }{ 2 } \end{aligned} $$ |
③ | Step 1: Write $ 15 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |