Tap the blue circles to see an explanation.
$$ \begin{aligned}3 \cdot \frac{z}{z^2+9z+20}-6\frac{z}{z^2+10z+24}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{3z}{z^2+9z+20}-\frac{6z}{z^2+10z+24} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-3z^2-12z}{z^3+15z^2+74z+120} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}-\frac{3z}{z^2+11z+30}\end{aligned} $$ | |
① | Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 3 \cdot \frac{z}{z^2+9z+20} & \xlongequal{\text{Step 1}} \frac{3}{\color{red}{1}} \cdot \frac{z}{z^2+9z+20} \xlongequal{\text{Step 2}} \frac{ 3 \cdot z }{ 1 \cdot \left( z^2+9z+20 \right) } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 3z }{ z^2+9z+20 } \end{aligned} $$ |
② | Step 1: Write $ 6 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 6 \cdot \frac{z}{z^2+10z+24} & \xlongequal{\text{Step 1}} \frac{6}{\color{red}{1}} \cdot \frac{z}{z^2+10z+24} \xlongequal{\text{Step 2}} \frac{ 6 \cdot z }{ 1 \cdot \left( z^2+10z+24 \right) } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 6z }{ z^2+10z+24 } \end{aligned} $$ |
③ | To subtract raitonal expressions, both fractions must have the same denominator. |
④ | Factor both the denominator and the numerator, then cancel the common factor. $\color{blue}{z+4}$. $$ \begin{aligned} \frac{-3z^2-12z}{z^3+15z^2+74z+120} & =\frac{ \left( -3z \right) \cdot \color{blue}{ \left( z+4 \right) }}{ \left( z^2+11z+30 \right) \cdot \color{blue}{ \left( z+4 \right) }} = \\[1ex] &= \frac{-3z}{z^2+11z+30} \end{aligned} $$ |