Tap the blue circles to see an explanation.
$$ \begin{aligned}3x^4-12 \cdot \frac{x^2}{3}x^5-3x^3& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3x^4-\frac{12x^2}{3}x^5-3x^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}3x^4-\frac{12x^7}{3}-3x^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-12x^7+9x^4}{3}-3x^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-12x^7+9x^4-9x^3}{3}\end{aligned} $$ | |
① | Step 1: Write $ 12 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 12 \cdot \frac{x^2}{3} & \xlongequal{\text{Step 1}} \frac{12}{\color{red}{1}} \cdot \frac{x^2}{3} \xlongequal{\text{Step 2}} \frac{ 12 \cdot x^2 }{ 1 \cdot 3 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 12x^2 }{ 3 } \end{aligned} $$ |
② | Step 1: Write $ x^5 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{12x^2}{3} \cdot x^5 & \xlongequal{\text{Step 1}} \frac{12x^2}{3} \cdot \frac{x^5}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 12x^2 \cdot x^5 }{ 3 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 12x^7 }{ 3 } \end{aligned} $$ |
③ | Step 1: Write $ 3x^4 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
④ | Step 1: Write $ 3x^3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |