Tap the blue circles to see an explanation.
$$ \begin{aligned}3x^3-15x+\frac{8}{12}x^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3x^3-15x + \frac{ 8 : \color{orangered}{ 4 } }{ 12 : \color{orangered}{ 4 }} \cdot x^2 \xlongequal{ } \\[1 em] & \xlongequal{ }3x^3-15x+\frac{2}{3}x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}3x^3-15x+\frac{2x^2}{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{9x^3+2x^2-45x}{3}\end{aligned} $$ | |
① | Divide both the top and bottom numbers by $ \color{orangered}{ 4 } $. |
② | Step 1: Write $ x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{2}{3} \cdot x^2 & \xlongequal{\text{Step 1}} \frac{2}{3} \cdot \frac{x^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 2 \cdot x^2 }{ 3 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2x^2 }{ 3 } \end{aligned} $$ |
③ | Step 1: Write $ 3x^3-15x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |